回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1
2
3

4
5
6
7
8
9

基本介绍

MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
1.MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

POA-CNN-BiLSTM鹈鹕算法是一种用于回归预测的神经网络模型,它结合了卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和多输入单输出的架构。
在这个模型中,卷积神经网络用于从输入数据中提取特征,双向长短期记忆神经网络用于处理序列数据,并且多输入单输出的架构可以同时处理多个输入变量并输出一个预测结果。这个模型的名称中的“鹈鹕”指的是一种候鸟,可能是因为这个模型可以处理多个输入变量,就像候鸟可以飞行和浮游。
优化这个模型的方法可以包括以下几个方面:
数据预处理:对输入数据进行预处理可以提高模型的性能。可以进行数据归一化、标准化,或者进行特征选择和降维等操作,以减少输入数据的维度和噪声,从而更好地提取特征。
超参数调优:选择合适的超参数可以提高模型的性能。
正则化:使用正则化技术可以减少模型的过拟合。可以使用L1、L2正则化、dropout等技术来避免模型过度拟合训练数据。
综上所述,优化POA-CNN-BiLSTM鹈鹕算法可以通过多种方法进行,通过这些方法的结合可以提高模型的性能和泛化能力,从而更好地预测回归结果。

6

基于卷积神经网络和双向长短期记忆(BiLSTM)神经网络的深度学习网络结构。采用特征融合的方法,通过卷积网络提取出浅层特征与深层特征并进行联接,对特征通过卷积进行融合,将获得的矢量信息输入BiLSTM单元。

程序设计

  • 完整源码和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整源码和数据下载方式2(资源处直接下载):MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
  • 完整程序和数据下载方式3(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53378.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从Vue2到Vue3【七】——Vue2中响应式原理的实现及其缺陷

系列文章目录 内容链接从Vue2到Vue3【零】Vue3简介从Vue2到Vue3【一】Composition API&#xff08;第一章&#xff09;从Vue2到Vue3【二】Composition API&#xff08;第二章&#xff09;从Vue2到Vue3【三】Composition API&#xff08;第三章&#xff09;从Vue2到Vue3【四】C…

Linux知识点 -- 基础IO(二)

Linux知识点 – 基础IO&#xff08;二&#xff09; 文章目录 Linux知识点 -- 基础IO&#xff08;二&#xff09;一、重定向1.输出重定向2.输入重定向3.追加重定向4.重定向系统调用5.minishell支持重定向6.stdout和stderr的区别7.常规的重定向操作8.perror的实现 二、Linux下一切…

端口复用与重映射

端口复用和重映射 STM32F1有很多的内置外设&#xff0c;这些外设的外部引脚都是与GPIO复用的。也就是说&#xff0c;一个GPIO如果可以复用为内置外设的功能引脚&#xff0c;那么当这个GPIO作为内置外设使用的时候&#xff0c;就叫做复用。 大家都知道&#xff0c;MCU都有串口…

flutter:轮播

前言 介绍几个比较有不错的轮播库 swipe_deck 与轮播沾边&#xff0c;但是更多的是一种卡片式的交互式界面设计。它的主要概念是用户可以通过左右滑动手势浏览不同的卡片&#xff0c;每张卡片上都有不同的信息或功能。 Swipe deck通常用于展示图片、产品信息、新闻文章、社…

C#文件操作从入门到精通(1)——INI文件操作

点击这里:微软官方文档查看writePrivateProfileString函数定义 常见错误: 1、中文路径写入失败,为啥? 2、文件不是全路径,只有文件名也会写入失败: 3、GetLastError怎么使用? GetLastError错误代码含义: (0)-操作成功完成。 (1)-功能错误。 (2)- 系统找不到指定的文件…

【Docker】Docker应用部署之Docker容器安装Redis

目录 一、搜索Redis镜像 二、拉取Redis镜像 三、创建容器 四、测试使用 一、搜索Redis镜像 docker search redis 二、拉取Redis镜像 docker pull redis:版本号 # 拉取对应版本的redis镜像 eg: docker pull redis:5.0 三、创建容器 docker run -id --nameredis -p 6379:637…

本地文件夹上传到Github

本地文件夹上传到Github 步骤1. 下载git步骤2. 在github中新建一个库&#xff08;Repository&#xff09;步骤3. 设置SSH key步骤4. 添加SSH keys步骤5. 本地文件上传到github参考 步骤1. 下载git 下载git客户端&#xff0c;并在本地安装完成。 步骤2. 在github中新建一个库&a…

Day48 算法记录|动态规划15 (子序列)

子序列 392. 判断子序列115.不同的子序列 392. 判断子序列 这道题和1143最长公共字串相同 dp[i][j] 表示以下标i-1为结尾的字符串s&#xff0c;和以下标j-1为结尾的字符串t&#xff0c;相同子序列的长度为dp[i][j]。 class Solution {public boolean isSubsequence(String s,…

C# 继承,封装,多态等知识点

一&#xff1a;面向对象的三大特征&#xff1a;继承性&#xff0c;封装性&#xff0c;多态性 1&#xff1a;继承性&#xff1a;继承主要描述是类与类之间的关系&#xff0c;通过继承可以在无需重新编写原有的类的情况下&#xff0c;对原有的类的功能进行扩展。 2&#xff1a;封…

IP协议与ethernet协议

IP包头 IP网的意义 当互联网上的主机进行通信时&#xff0c;就好像在一个网络上通信一样&#xff0c;看不见互连的各具体的网络异构细节如果在这种覆盖全球的IP网的上层使用TCP协议&#xff0c;那么就是现在的互联网 IP数据报的格式 分组在互联网中的传送 分组传输路径 IP数…

FLinkCDC读取MySQl时间戳时区相关问题解决汇总

FlinkCDC时间问题timestamp等https://blog.csdn.net/qq_30529079/article/details/127809317 FLinkCDC读取MySQl中的日期问题https://blog.csdn.net/YPeiQi/article/details/130265653 关于flink1.11 flink sql使用cdc时区差8小时问题https://blog.csdn.net/weixin_44762298/…

【构造】CF1758 D

Problem - D - Codeforces 题意&#xff1a; 思路&#xff1a; 如果需要构造一个和为定值的序列&#xff0c;那么考虑n-d,n-d1,.....nd-1,nd这种形式 如果要保证不能重复&#xff0c;那么先考虑一个排列&#xff0c;然后在排列上操作 如果根据小数据构造出了一些简单情形&a…

RLHF 技术:如何能更有效?又有何局限性?

编者按&#xff1a;自ChatGPT推出后&#xff0c;基于人类反馈的强化学习(RLHF)技术便成为大模型构建和应用人员关注的热点。但该方法一些情况下效果却差强人意&#xff0c;有些基础模型经RLHF调优后反而表现更差。RLHF技术的适用性和具体操作细节似乎成谜。 这篇文章探讨了基于…

Structure Guided Lane Detection 论文精度

结构导向车道检测 摘要 近年来&#xff0c;随着深度神经网络和自动驾驶的快速发展&#xff0c;车道检测取得了长足的进步。然而&#xff0c;主要存在三个问题&#xff0c;包括车道的特征化、场景与车道之间的结构关系建模以及对车道的更多贡献&#xff08;如实例和类型&#…

Bean的加载方式

目录 1. 基于XML配置文件 2. 基于XML注解方式声明bean 自定义bean 第三方bean 3.注解方式声明配置类 扩展1&#xff0c;FactoryBean 扩展2,加载配置类并加载配置文件&#xff08;系统迁移) 扩展3&#xff0c;proxyBeanMethodstrue的使用 4. 使用Import注解导入要注入的bean…

画架构图工具-haydn

Haydn解决方案数字化平台_海顿解决方案工具链-华为云 下图为haydn架构图示例 Haydn解决方案数字化平台_海顿解决方案工具链-华为云 1、vpc是一个很重要的元素&#xff0c;有网络隔离的作用。 2、OBS、CES、CTS&#xff0c;不需要画到vpc里面。 3、不在区域内的资源&#xf…

CPU Architecture Methodologies

MMU MMU(Memory Management Unit) 负责将逻辑地址转化为物理地址对于现代处理器来说&#xff0c;一般每个core都有自己的 MMU页表等数据结构保存在 TLB NUMA Non-uniform memory access (NUMA) is a computer memory design used in multiprocessing, where the memory access…

汽车产业链面临重大变革 大运乘用车加强产业布局 助力低碳出行

当前&#xff0c;国家“双碳”战略的全面实施&#xff0c;全球绿色产业发展理念的不断加深以及汽车产品形态、交通出行模式、能源消费结构变革所呈现的发展机遇等诸多因素&#xff0c;持续推动新能源汽车产业全面转型提速。据悉&#xff0c;2022年&#xff0c;中国新能源汽车销…

7、单元测试--测试RestFul 接口

单元测试–测试RestFul 接口 – 测试用例类使用SpringBootTest(webEnvironment WebEnvironment.RANDOM_PORT)修饰。 – 测试用例类会接收容器依赖注入TestRestTemplate这个实例变量。 – 测试方法可通过TestRestTemplate来调用RESTful接口的方法。 测试用例应该定义在和被测…

企业数字化转型失败率达80%,面临哪些挑战?应该如何规划?

随着数字化在社会的飞速发展&#xff0c;人们的生活工作娱乐等方方面面都已经被数字化占领&#xff0c;数字化所衍生出的数字经济更是成为高速增长的国民经济支柱&#xff0c;而数据作为“副产品”也成功进化为第五大生产要素&#xff0c;发挥出巨大的价值&#xff0c;变成了个…