科技助力输电线安全隐患预警,基于YOLOv5全系列参数【n/s/m/l/x】模型开发构建电力设备场景下输电线安全隐患目标检测预警系统

电力的普及让我们的生活变得更加便利,四通八达的电网连接着生活的方方面面,电力能源主要是依托于庞大复杂的电网电力设备进行传输的,有效地保障电网场景下输电线的安全对于保障我们日常生活所需要的电力有着重要的意义,但是电力设备电网庞大复杂,可能会出现各种各样的问题,单纯地依靠电力工人人工巡查很难实现全天候无死角地覆盖,这时候就需要借助于一些科技智能化数字化的手段来提升安检运维效率,尽可能地降低人工成本。本文主要就是站在这个考虑的基础上探索基于目标检测模型来开发自动化智能化的输电线安全隐患目标检测系统,期望对于出现在输电网中的异常目标安全隐患及时进行检测识别预警上报,消除潜在的安全隐患。

本文主要是基于YOLO系列最为经典的YOLOv5全系列的参数模型来进行开发实验的,首先看下实例效果:

 在我们前面的系列博文中其实已经有过很多相关的开发实践了,感兴趣的话可以自行移步阅读即可:

《科技助力输电线安全隐患预警,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建电力设备场景下输电线安全隐患目标检测预警系统》

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

简单看下实例数据:

训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test



# Classes
names:
  0: balloon
  1: kite
  2: nest
  3: trash

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
 
# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待漫长的训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

接下来我们绘制对比直方图来直观地对比五款不同参数量级的模型最终的评估效果:

直方图更为直观一些,不难看出,五款模型在每个指标上都是略微有差异,没有拉开明显的差距,m系列的模型甚至效果还要优于l和x这两款参数量级更大的模型,我们最终结合参数量和性能考虑最终选择基于m系列的模型作为线上推理的选择。

接下来我们深入展开看下每个类别下这五款不同的模型各自的性能表现情况:

可以看到在不同的类别上没有哪一款模型可以实现绝对的优势。

接下来我们看下最终选择的m系列的模型结果详情:
【Batch实例】

【训练可视化】

【PR曲线】

【F1曲线】

【Precision曲线】

【Recall曲线】

【混淆矩阵】

感兴趣的话也都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/532947.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java使用aspose-words实现word文档转pdf

Java使用aspose-words实现word文档转pdf 1.获取转换jar文件并安装到本地maven仓库 aspose-words-15.8.0-jdk16.jar包下载地址:https://zhouquanquan.lanzn.com/b00g257yja 密码:965f 下载aspose-words-15.8.0-jdk16.jar包后,通过maven命令手动安装到本…

HWOD:走方格的方案数

一、自己的解题思路 1、(0,m)和(n,0) (0,m)表示处在棋盘的左边线,此刻能回到原点的路线只有一个,就是一路向上 (n,0)表示处在棋盘的上边线,此刻能回到原点的路线只有一个,就是一路向左 2、(1,1) (1,1)表示只有一个方格&#…

【截至2023年底】语言模型的发展

什么是大语言模型LLM?ChatGPT、LLAMA各自有什么优势? from: https://www.youtube.com/watch?vt6qBKPubEEo github: https://github.com/Mooler0410/LLMsPracticalGuide 来自这篇survey,但据说还在更新,到…

嵌入式ARM版本银河麒麟操作系统V10SP1安装OPenGauss数据库

前言: 官网提供了非常完整的openGauss安装步骤。 https://opengauss.org/zh/download/archive/列举一下个人的使用环境: 麒麟V10 rk3588工控板(ARM) openGauss-3.0.5(极简版)浏览一下官网,可以…

dnspy逆向和de4dot脱壳

拿到一个软件,使用dnspy查看,发现反汇编后关键部分的函数名和代码有很多乱码: 这样的函数非常多,要想进一步调试和逆向,就只能在dnspy中看反汇编代码了,而无法看到c#代码,当时的整个逆向过程只剩…

【Linux的进程篇章 - 进程程序替换】

Linux学习笔记---009 Linux之进程程序替换理解1、进程程序替换1.1、先看代码和现象1.2、替换的原理1.3、回顾fork函数的应用 2、使用所有的替换方法,并且认识函数参数的含义2.1、exec*函数族2.2、exec替换自定义的程序 3、进程的替换的execve系统调用函数 Linux之进…

MAC: 自己制作https的ssl证书(自己签发免费ssl证书)(OPENSSL生成SSL自签证书)

MAC: 自己制作https的ssl证书(自己签发免费ssl证书)(OPENSSL生成SSL自签证书) 前言 现在https大行其道, ssl又是必不可少的环节. 今天就教大家用开源工具openssl自己生成ssl证书的文件和私钥 环境 MAC电脑 openssl工具自行搜索安装 正文 1、终端执行命令 //生成rsa私钥&…

蓝桥杯-单片机基础16——利用定时计数中断进行动态数码管的多窗口显示

综合查阅了网络上目前能找到的所有关于此技能的代码,最终找到了下述方式比较可靠,且可以自定义任意显示的数值。 传统采用延时函数的方式实现动态数码管扫描,在题目变复杂时效果总是会不佳,因此在省赛中有必要尝试采用定时计数器中…

Vue2(十五):replace属性、编程式路由导航、缓存路由组件、路由组件独有钩子、路由守卫、history与hash

一、router-link的replace属性 1、作用:控制路由跳转时操作浏览器历史记录的模式 2、浏览器的历史记录有两种写入方式:分别为push和replace,push是追加历史记录,replace是替换当前记录。路由跳转时候默认为push 3、如何开启repla…

数据仓库发展历史与架构演进

从1990年代Bill Inmon提出数据仓库概念后经过四十多的发展,经历了早期的PC时代、互联网时代、移动互联网时代再到当前的云计算时代,但是数据仓库的构建目标基本没有变化,都是为了支持企业或者用户的决策分析,包括运营报表、企业营…

数据结构DAY5--二叉树的概念

树: 概念: 由n个节点组成的有限集,有一个根节点;其他节点只有一个前驱节点,但可以有多个后继节点。(一对多) 叶子节点(终端结点):只有前驱结点没有后继结点 非叶子节点&#xff0…

【新增利息宝】最新更新的自动抢单系统V6源码免授权无后门 利息宝/抢单/接单返利/区块链

【新增利息宝V6】免授权无后门自动抢单系统源码/利息宝/抢单/接单返利/区块链 更新日志: Ⅰ、新增利息宝功能,余额转入理财 Ⅱ、优化抢单体验,显示随机倒计时和提示内容 Ⅲ、新增首页和订单页面UI特效 Ⅳ、修复抢单页面回调不能返回原分…

【opencv】示例-ela.cpp JPEG图像的错误等级分析(ELA) 通过分析图像压缩后的差异来检测图像是否被篡改过...

ela_modified.jpg 原始ela_modified压缩后再解压得到compressed_img 差异图像Ela 这段代码的功能是实现JPEG图像的错误等级分析(ELA),通过分析图像压缩后的差异来检测图像是否被篡改过。程序会首先读取一张图片,然后对其应用质量…

算法打卡day31

今日任务: 1)435.无重叠区间 2)763.划分字母区间 3)56.合并区间 435.无重叠区间 题目链接:435. 无重叠区间 - 力扣(LeetCode) 给定一个区间的集合,找到需要移除区间的最小数量&…

自己动手封装axios通用方法并上传至私有npm仓库:详细步骤与实现指南

文章目录 一、构建方法1、api/request.js2、api/requestHandler.js3、api/index.js 二、测试方法1、api/axios.js2、main.js3、app.vue4、vue.config.js5、index.html 三、打包1、配置package.json2、生成库包3、配置发布信息4、发布 四、使用1、安装2、使用 五、维护1、维护和…

AGI的核心对齐问题:能力泛化和急速左转

在解决人工智能对齐(alignment)的技术挑战时,一个核心问题是确保人工智能系统的行为与人类价值和期望保持一致。 然而,人工智能系统往往在获取更强大的能力时会比在对齐方面更容易实现泛化。换句话说,尽管我们可能能够…

Git 安装和配置

下载 Git 网址: https://git-scm.com/download 安装 Git 双击安装包, 开始安装. 修改安装路径, 选择非中文无空格路径: 开始安装: 安装成功: 配置 Git 安装完成后, 在任意文件夹内, 右键, 可以显示两个 Git 选项, 就说明安装成功了.

数据结构——线性表(链式存储结构)

语言:C语言软件:Visual Studio 2022笔记书籍:数据结构——用C语言描述如有错误,感谢指正。若有侵权请联系博主 一、线性表的逻辑结构 线性表是n个类型相同的数据元素的有限序列,对n>0,除第一元素无直接…

如何用electron(vue)搜索电脑本地wifi

对于搜索本地 WiFi 网络,可以使用 Electron 结合 Node.js 来编写一个简单的应用程序。 以下是一个基本的示例,它使用 Node.js 的 wifi 模块来搜索并列出附近的 WiFi 网络: 首先,确保你已经安装了 Node.js 和 Electron。 然后&am…

【Qt】:对话框(一)

对话框 一.基本的对话框二.自定义对话框三.通过图形化界面自定义对话框四.关于对话框mode 对话框是GUI程序中不可或缺的组成部分。一些不适合在主窗口实现的功能组件可以设置在对话框中。对话框通常是一个顶层窗口,出现在程序最上层,用于实现短期任务或者…