Elastic:加速生成式人工智能体验

作者:Matt Riley

搜索驱动的人工智能和开发人员工具专为速度和规模而打造。

在大型语言模型(LLM)和生成式 AI 的每日突破中,开发者站在了这场运动的最前沿,影响着它的方向和可能性。在这篇博客中,我将分享 Elastic 的搜索客户是如何利用 Elastic 的向量数据库和开放平台,为搜索驱动的 AI 和开发者工具加速和扩展生成式 AI 体验,为他们提供了新的增长途径。

Dimensional Research 进行的最近一次开发者调查并得到 Elastic 支持的结果显示,87% 的开发者已经有了生成式 AI 的用例 —— 无论是数据分析、客户支持、工作场所搜索还是聊天机器人。但只有 11% 已经成功地将这些用例部署到生产环境中。

有几个因素阻碍了他们:

  • 模型部署和管理:选择正确的模型需要实验和快速迭代。为生成式 AI 应用部署 LLM 是耗时且复杂的,对许多组织来说学习曲线陡峭。
  • 法律和合规问题:当处理敏感数据时,这些问题尤其重要,可以成为模型采用的障碍。
  • 扩展性:领域特定数据对于 LLM 理解上下文和生成准确输出至关重要。随着数据的扩展,检索这些数据需要同样可扩展的支持,以应对生成向量嵌入的工作负载,迅速增加对内存和计算资源的需求。在庞大的数据集中,上下文窗口大且代价高昂地传递给 LLM,并且更多的上下文并不一定意味着更高的相关性。只有一个强大的工具平台能够塑造上下文,并平衡相关性与扩展性之间的权衡,以实现一个可行的、面向未来的创新架构。
图表:你的组织预计在构建生成式 AI 用例时,将在哪些领域花费最多的时间和资源?

开发者寻求一种可靠、可扩展且成本效益高的方式来构建生成式 AI 应用程序,以及一个简化实施和 LLM 选择过程的平台。

图表:选择向量搜索引擎时,贵组织的主要考虑因素是什么?

Elastic 通过快速创新的步伐,持续为这些开发者关注的问题提供解决方案,以支持生成式 AI 的用例。

快速、大规模地推出生成式人工智能体验

Elasticsearch 是市场上下载次数最多的向量数据库,Elastic 与 Lucene 社区的深厚合作使我们能够更快地为客户设计和交付搜索创新。 Elasticsearch 现在由 Lucene 9.10 提供支持,帮助客户通过生成式 AI 实现速度和规模。 在 9.10 中,除其他速度提升外,用户还发现多段索引的查询延迟显着改善。 这仅仅是开始,还会有更快的速度。

我们选择 Elastic 作为向量数据库,因为它具有固有的灵活性、可扩展性和可靠性。Elastic 不断通过快速提供支持机器学习和生成式 AI 的新功能来提升水平。

—— Peter O'Connor,Stack Overflow 平台工程部经理

为了快速实施和扩展 RAG 工作负载,Elastic 学习稀疏编码器(ELSER)—— 现已正式发布 —— 是一款易于部署、优化的、用于语义搜索的晚期交互机器学习(ML)模型。ELSER 提供上下文相关的搜索结果,无需精细调整,并为开发者提供了一个内置的可信解决方案,节省了你在模型选择、部署和管理方面的时间和复杂性。

ELSER 在不牺牲速度的情况下提升了搜索的相关性 —— 当 Consensus 升级了其由 Elastic 提供动力的学术研究平台,使用 ELSER 时,它将搜索延迟减少了75%,同时提高了准确性。

当你将 ELSER 与 E5 嵌入模型配对时,你可以轻松应用多语言向量搜索。我们为 Elasticsearch 部署特别定制的 E5 优化工件。通过上传多语言模型或与 Elastic 的推理 API 集成(例如,Cohere 的多语言模型嵌入)也可以实现多语言搜索。这些进步进一步加速了检索增强生成(RAG),使 Elastic 成为扩展你构建的创新生成式 AI 体验的关键基础设施。

Elastic 也专注于高效地扩展这些体验。我们在 8.12 版本中引入的标量量化是向量存储的游戏规则改变者。大型向量扩展可能会导致搜索速度变慢。但这种压缩技术显著降低了内存需求,达到四倍,并且在更高的规模上,对召回率的影响可以忽略不计。它使得在 RAG 中使用的向量搜索速度翻倍,而不牺牲准确性。结果是什么?一个更精简、更快的系统,在规模上削减了基础设施成本。

搜索对于提升 Udemy 用户体验至关重要 —— 将用户与相关的教育内容匹配,这就是为什么 Elastic 一直是我们的长期合作伙伴。自从去年升级到 Elastic Cloud 以来,我们就一直使用 Elastic 作为我们的向量数据库,它为我们的业务开辟了新的机会。随着我们在创新教育解决方案中扩展向量搜索,我们已经看到了查询速度和资源效率的增加。

Udemy 软件工程团队

对于 RAG 来说,最相关的搜索引擎

相关性是获得最佳生成式 AI 体验的关键。使用 ELSER 进行语义搜索和使用 BM25 进行文本搜索是检索作为 LLM 上下文的相关文档的绝佳首选步骤。大型上下文窗口可以进一步通过现在是 Elastic Stack 的一部分的重新排名工具进行细化。重新排名器应用强大的 ML 模型对搜索结果进行微调,并根据用户偏好和信号将最相关的结果置于顶部。学习排序(LTR)现在也是 Elasticsearch 平台的本机功能。这对于依赖于向 LLM 提供最相关结果作为上下文的 RAG 用例非常有用。

通过 inference API 和像 Cohere 这样的第三方提供商,实施进一步简化。升级到我们的最新版本,以测试重新排名器对相关性的影响。

这些方法不仅可以提高搜索准确性(例如 Consensus 的情况下提高了 30%),而且还可以帮助你快速获得结果,为 RAG 优化相关性并有效管理 ML 工作流。

使模型选择和更换变得简单

模型选择就像在干草堆里寻找针一样感觉艰难。实际上,我们的开发者调查突出显示,跨组织的前五大生成式 AI 努力之一是与 LLM 集成。这个难题不仅仅是为一个用例选择开源还是闭源 LLM —— 它还扩展到准确性、数据安全性、特定领域的特性,以及快速适应不断变化的 LLM 生态系统。开发者需要一个直接的工作流程来尝试新模型并轻松更换它们。

Elastic 通过其开放平台、向量数据库和搜索引擎支持转换器模型和基础模型。Elastic 学习稀疏编码器(ELSER)是加速 RAG 实施的可靠起点。

此外,Elastic 的 inference API 为开发者简化了代码和多云推理管理。无论你是使用 ELSER 还是来自 OpenAI(在开发者中评估和使用最多的模型)、Hugging Face、Cohere 或其他来源的嵌入式模型来处理 RAG 工作负载,一个 API 调用就能确保管理混合推理部署的代码整洁。借助 inference API,可以轻松访问广泛的模型,因此你可以找到合适的选择。与特定领域的自然语言处理(NLP)和生成式 AI 模型的轻松集成简化了模型管理,释放你的时间专注于 AI 创新。

图表:你的组织使用过、评估过或计划评估哪些嵌入模型?
图表:你的组织目前使用或预计将来会使用哪些类型的模型?

携手同行:与集成共创卓越体验

开发者还可以托管包括公共和私有 Hugging Face 模型在内的多样化转换模型。虽然 Elasticsearch 作为整个生态系统的多功能向量数据库,那些偏好使用诸如 LangChain 和 LlamaIndex 工具的开发者,可以利用我们的集成快速启动基于 LangChain 模板的生产就绪的生成式 AI 应用。Elastic 的开放平台让你能够快速适应、实验并加速生成式 AI 项目。Elastic 最近还被添加为 On Your Data 的第三方向量数据库,这是一个构建对话式 copilots 的新服务。另一个好例子是 Elastic 与 Cohere 团队背后的合作,使 Elastic 成为 Cohere 嵌入式向量的优秀向量数据库。

生成式 AI 正在重塑每一个组织,Elastic 在这里支持这一转型。对开发者而言,成功实施生成式 AI 的关键是持续学习(你已经看过 Elastic Search Labs 了吗?)和快速适应不断变化的 AI 景观。

当你将 Elastic 的准确性和速度与 Google Cloud 的强大功能结合起来时,你可以构建一个非常稳定和成本效益高的搜索平台,同时为用户提供令人愉悦的体验。

—— Sujith Joseph,思科系统的首席企业搜索和云架构师

立即尝试!

  • 在 Elastic Search 发布说明中阅读有关这些功能以及更多内容。
  • 现有的 Elastic Cloud 客户可以直接从 Elastic Cloud 控制台访问许多这些功能。还没有使用 Elastic Cloud?开始免费试用。
  • 尝试 Elasticsearch Relevance Engine,我们的一套用于构建 AI 搜索应用程序的开发者工具。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

在这篇博文中,我们可能使用或引用了第三方生成人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。

Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标志是 Elasticsearch N.V. 的商标、徽标或注册商标。 在美国和其他国家。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。

原文:Accelerating generative AI experiences | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/531175.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STL容器之unordered_map类

文章目录 STL容器之unordered_map类1、unordered_map1.1、unordered_map介绍1.2、unordered_map的使用1.2.1、unordered_map的常见构造1.2.2、unordered_map的迭代器1.2.3、unordered_map的容量1.2.4、unordered_map的增删查1.2.5、unordered_map的桶操作 2、unordered_multima…

白盒测试-条件覆盖

​ 条件覆盖是指运行代码进行测试时,程序中所有判断语句中的条件取值为真值为假的情况都被覆盖到,即每个判断语句的所有条件取真值和假值的情况都至少被经历过一次。 ​ 条件覆盖率的计算方法为:测试时覆盖到的条件语句真、假情况的总数 / 程…

redis开源协议变更了?我们还能用吗?

Redis是一款广泛使用的开源键值存储数据库,其开源协议的变更引起了社区和行业的广泛关注。根据搜索结果,Redis Labs宣布Redis将采用双重源代码可用许可证(RSALv2)和服务器端公共许可证(SSPLv1),…

AI自我推理和规划,OpenAI和Meta今年要打开“潘多拉盒子”了 油价100美元几乎已经成了华尔街的共识

OpenAI和Meta今年要打开“潘多拉盒子”了 OpenAI首席运营官Brad Lightcap表示,“我们将开始看到AI能够以更复杂的方式执行更复杂的任务。” OpenAI和Meta正准备发布新的AI模型,他们称这些模型将能够进行自我推理和规划,而这是实现机器“超…

Jmeter —— 自动录制脚本

1、Jmeter配置 1.1新增一个线程组 1.2Jmeter中添加HTTP代理 1.3配置HTTP代理服务器 修改端口 修改Target Cintroller(目标控制器) 修改Grouping(分组) 编辑录制中的包含和排除 在“URL Patterns to include包含模式”中填入.*(123456).*用以过滤请求地址中不包含123456的请求…

设计模式-接口隔离原则

基本介绍 客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上先看一张图: 类A通过接口Interface1 依赖类B,类C通过接口Interface1 依赖类D,如果接口Interface1对于类A和类C来说不是最小接口,那么类…

LangChain入门:17.使用 ConversationChain实现对话记忆功能

在默认情况下,无论是 LLM 还是代理都是无状态的,每次模型的调用都是独立于其他交互的。也就是说,我们每次通过 API 开始和大语言模型展开一次新的对话,它都不知道你其实昨天或者前天曾经和它聊过天了。 你肯定会说,不可…

3.2.k8s搭建-kubeadm

目录 一、虚拟机准备 二、所有节点环境准备 1.所有节点做hosts解析 2.所有节点重新命名 3.所有节点安装docker 4.所有节点为docker做linux内核转发 5.所有节点配置docker 6.所有节点关闭swap分区 7.所有节点验证网卡硬件编号是否冲突 8.所有节点配置允许iptables桥接…

【HTML】简单制作一个分形动画

目录 前言 开始 HTML部分 效果图 ​编辑​编辑​编辑​编辑总结 前言 无需多言,本文将详细介绍一段代码,具体内容如下: 开始 首先新建文件夹,创建一个文本文档,其中HTML的文件名改为[index.html]&a…

【原创教程】Smart200通过Modbus RTU实现V90位置控制的方法

1 绪论 1.1 本文的目的 S7-200Smart 可通过标准的 Modbus 功能块发送伺服驱动器的控制指令及读写驱动器的参数。本文详细叙述了 S7-200 SMART PLC 通过 Modbus RTU 通信连接 SINAMICS V90 实现内部位置的 MDI 功能。(MDI(Manual Data Input)称为设定值直接给定运行方式。…

岛屿个数c++

参考文章 岛屿个数1岛屿个数2 题目 输入样例: 2 5 5 01111 11001 10101 10001 11111 5 6 111111 100001 010101 100001 111111输出样例: 1 3样例解释 对于第一组数据,包含两个岛屿,下面用不同的数字进行了区分: 0…

计算机网络-TCP基础、三次挥手、四次握手过程

TCP基础 定义:TCP是面向连接的、可靠的、基于字节流的传输层通信协议。这意味着在发送数据之前,TCP需要建立连接,并且它能确保数据的可靠传输。此外,TCP将数据视为无结构的连续字节流。面向连接:TCP只能一对一进行连接…

Harmony与Android项目结构对比

主要文件对应 Android文件HarmonyOS文件清单文件AndroidManifest.xmlmodule.json5Activity/Fragmententryability下的ts文件XML布局pages下的ets文件resresourcesModule下的build.gradleModule下的build-profile.json5gradlehvigor根目录下的build.gradle根目录下的build-profi…

动态内存管理详解

一.为什么要存在动态内存分配: 下图是不同类型数据在内存中的分配: 上述的开辟空间的⽅式有两个特点: • 空间开辟⼤⼩是固定的。 • 数组在申明的时候,必须指定数组的⻓度,数组空间⼀旦确定了⼤⼩不能调整 但是对…

DeepStream做对象模糊的几种方法

有时候,我们需要对视频的敏感信息做模糊处理,比如模糊人脸,车牌。 有时候,也需要对整帧做模糊,或者遮挡。比如这个例子。 下面介绍几种模糊的办法。 1. 通过nvosd deepstream-test1是DeepStream最简单的一个例子&…

基于SpringBoot的“垃圾分类网站”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“垃圾分类网站”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 系统功能界面图 用户登录、用户注…

基于java+springboot+vue实现的人事管理系统(文末源码+Lw)23-242

摘 要 使用旧方法对人事管理系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在人事管理系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开发的人事管理…

时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测

时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测 目录 时序预测 | Matlab实现SSA-ESN基于麻雀搜索算法(SSA)优化回声状态网络(ESN)的时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现SSA-ESN基于麻雀搜索…

SQL 注入之 Windows/Docker 环境 SQLi-labs 靶场搭建!

在安全测试领域,SQL注入是一种常见的攻击方式,通过应用程序的输入执行恶意SQL查询,从而绕过认证和授权,可以窃取、篡改或破坏数据库中的数据。作为安全测试学习者,如果你要练习SQL注入,在未授权情况下直接去…

(2022级)成都工业学院数据库原理及应用实验一:CASE工具概念数据模型建模

写在前面 1、基于2022级软件工程/计算机科学与技术实验指导书 2、代码仅提供参考 3、如果代码不满足你的要求,请寻求其他的途径 运行环境 window11家庭版 PowerDesigner 16.1 实验要求 某医院一个门诊部排班管理子系统涉及如下信息: 若干科室&a…