使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

在物联网(IoT)背景下,处理实时数据会遇到一些特定的障碍,如边缘计算资源不足、网络条件限制、扩展性存在问题、设备间有多样性差异。要克服这些挑战,需要高效的边缘计算技术、强大的安全措施、标准化协议、可扩展的管理系统和先进的数据处理能力。

通过综合利用 NATS JetStream、RisingWave 和 Superset,可以构建一个强大的解决方案,用于开发可靠且可扩展的实时物联网应用。

RisingWave 是什么?

RisingWave 是与 PostgreSQL 兼容的流数据库,具有成本效益、可扩展性和真正的云原生架构。它允许用户使用 SQL 从流数据中获取实时见解,易于设置、使用和操作。

NATS JetStream 是什么?

NATS 是一种安全连接技术,设计用于在分布式系统中发现和交换信息。它可以部署在任何环境中,用于微服务、数据流和物联网等不同用例,支持边缘设备,可使用多种语言和客户端进行交互。JetStream 构建在 NATS 之上,支持消息流的持久化。

Superset 是什么?

Apache Superset 是一个现代化数据探索和数据可视化平台。它是一款开源软件,可以取代或增强许多团队的专有商业智能工具。

概述

本文将深入探讨一个物联网场景,重点关注通过物联网传感器监控温度和湿度数据。我们将探讨 NATS JetStream 如何使边缘设备能够轻松将数据流传输到 RisingWave 并进行实时处理。通过窗口操作和聚合,RisingWave 可以高效地对数据进行高级分析。最后,我们将使用 Superset 创建表、图表和集成看板,对处理和分析的数据进行可视化。

实时物联网应用开发解决方案

1. 设置 NATS JetStream

NATS 服务器经过高度优化,其二进制文件不到 20 MB,使其可以轻松在各种机器上运行。无论是在 Raspberry Pi 还是规模宏大的服务器上,也无论是在云端、本地、边缘、裸机、虚拟机还是在容器中,均可轻松运行。

您可以使用 Docker 安装 NATS JetStream,如下所示:

docker pull nats:latest

要在 Docker 上运行 NATS JetStream,可以使用 -js Flag 启动 NATS 服务器。此 Flag 可启用 JetStream 功能,使您能够充分利用其各项功能。

docker run -p 4222:4222 -ti nats:latest -js

该 Docker 命令可启动 NATS JetStream。现在,您可以通过各种语言和客户端发布和订阅信息。

在 4222 端口运行的 NATS JetStream 服务器

2. 向 JetStream 发布数据

在此示例中,我们使用 iot_data 主题将物联网数据发布到 JetStream 的 Stream event_stream 中。下面是正在发布的数据示例:

'{"device_Id":"sensor1","temperature":25,"ts":"2023-01-05 05:50:00+00:00"},
'{"device_Id":"sensor1","temperature":26,"ts":"2023-01-05 05:50:01+00:00"}'
'{"device_Id":"sensor2","humidity":60,"ts":"2023-01-05 05:50:01+00:00"}'
'{"device_Id":"sensor1","temperature":27,"ts":"2023-01-05 05:50:02+00:00"}'
'{"device_Id":"sensor2","humidity":62,"ts":"2023-01-05 05:50:02+00:00"}'

3. 从 RisingWave 摄取 JetStream 的数据

我们可以使用开源 RisingWave 或托管服务(RisingWave Cloud)来摄取和处理流数据。本文将使用 RisingWave Cloud,它能够提供良好的用户体验,简化管理和使用 RisingWave 进行物联网监控的操作。

创建 RisingWave 集群

使用免费计划在 RisingWave Cloud 中创建 RisingWave 集群。有关说明,请参阅 RisingWave Cloud 文档。

RisingWave Cloud:账户注册和登录流程

在 RisingWave 中创建 Source 以摄取数据流

在 RisingWave 中创建 Source,以便从先前设置的 iot_data 主题的 Stream event_stream 中摄取数据。在此示例中,RisingWave 充当 NATS JetStream 的 Stream 和主题的订阅者。

请注意,RisingWave 中带有连接器设置的 Source 会与 Stream 建立连接,但不会持久化流数据。

CREATE SOURCE iot_source(
  device_Id VARCHAR,
  temperature VARCHAR,
  humidity VARCHAR,
  ts TIMESTAMPTZ
)
WITH (
  connector='nats',
  server_url='nats://8.210.9.253:4222',
  subject='iot_data',
  stream='event_stream',
  connect_mode='plain'
)FORMAT PLAIN ENCODE JSON;

4. 在 RisingWave 中进行分析

现在,我们根据名为 iot_source 的 Source 创建一个名为 iot_mv 的物化视图,用于存储传入的数据并进行分析。

CREATE MATERIALIZED VIEW iot_mv AS
SELECT 
    device_Id, 
    temperature,
    humidity,
    ts 
FROM iot_source;

可以使用以下 SQL 语句查询结果。

SELECT 
    device_Id, 
    temperature,
    ts 
from iot_mv
WHERE deviceId ='sensor1'
limit 5;

下面是一个结果示例。

device_id  | temperature |               ts               
----------+-------------+-------------------------------
 sensor1  |          25 | 2023-01-05 05:50:00+00:00
 sensor1  |          26 | 2023-01-05 05:50:01+00:00
 sensor1  |          27 | 2023-01-05 05:50:03+00:00
 sensor1  |          28 | 2023-01-05 05:50:05+00:00
 sensor1  |          29 | 2023-01-05 05:50:07+00:00

可以使用以下 SQL 语句查询结果。

SELECT 
    device_Id, 
    humidity,
    ts 
from iot_mv
WHERE deviceId ='sensor2'
limit 5;
| device_id | humidity |                    ts                    
|----------|----------|------------------------------------------
| sensor2  |    60    | 2023-01-05 05:50:02+00:00 
| sensor2  |    62    | 2023-01-05 05:50:04+00:00 
| sensor2  |    65    | 2023-01-05 05:50:06+00:00 
| sensor2  |    68    | 2023-01-05 05:50:08+00:00 
| sensor2  |    70    | 2023-01-05 05:50:10+00:00

下面的语句可创建一个名为 avg_temperature_mv 的物化视图,用于根据时间戳 ts 计算指定设备 sensor1 在 1 分钟 Tumbling 窗口内的平均温度。结果包括设备 ID、平均温度、窗口开始和窗口结束的列。

CREATE MATERIALIZED VIEW avg_temperature_mv AS
SELECT device_Id, AVG(temperature) AS avg_temperature
window_start, window_end
FROM TUMBLE (iot_mv, ts, INTERVAL '1 MINUTES')
WHERE device_Id ='sensor1'
GROUP BY device_Id,window_start, window_end;

可以使用以下 SQL 语句查询结果。

SELECT * FROM avg_temperature_mv LIMIT 5;

下面是一个结果示例。

| device_id | avg_temperature  |        window_start        |          window_end           
|----------|------------------|----------------------------|--------------------------
| sensor1  |        41        | 2023-01-05T05:56:00Z       | 2023-01-05T05:57:00Z 
| sensor1  |        40        | 2023-01-05T05:50:00Z       | 2023-01-05T05:51:00Z 
| sensor1  |        38        | 2023-01-05T05:55:00Z       | 2023-01-05T05:56:00Z 
| sensor1  |        35        | 2023-01-05T05:54:00Z       | 2023-01-05T05:55:00Z 
| sensor1  |        55        | 2023-01-05T06:01:00Z       | 2023-01-05T06:02:00Z

同样,下面的语句可创建一个名为 avg_humidity_mv 的物化视图,用于根据时间戳 ts 计算指定设备 sensor2 在 1 分钟 Tumbling 窗口内的平均湿度。结果包括设备 ID、平均湿度、窗口开始和窗口结束的列。

CREATE MATERIALIZED VIEW avg_humidity_mv AS
SELECT device_Id, AVG(humidity) AS avg_humidity
window_start, window_end
FROM TUMBLE (iot_mv, ts, INTERVAL '1 MINUTES')
WHERE device_Id ='sensor2'
GROUP BY device_Id,window_start, window_end;

可以使用以下 SQL 语句查询结果。

SELECT * FROM avg_humidity_mv LIMIT 5;

下面是一个结果示例。

| device_Id | avg_humidity |        window_start         |          window_end           
|----------|--------------|-----------------------------|-------------------------------
| sensor2  |   112.33     | 2023-01-05T05:58:00Z | 2023-01-05T05:59:00Z |
| sensor2  |      75      | 2023-01-05T05:53:00Z | 2023-01-05T05:54:00Z |
| sensor2  |      90      | 2023-01-05T05:55:00Z | 2023-01-05T05:56:00Z |
| sensor2  |      95      | 2023-01-05T05:50:00Z | 2023-01-05T05:51:00Z |
| sensor2  |     105      | 2023-01-05T05:57:00Z | 2023-01-05T05:58:00Z |

5. 在 Apache Superset 中可视化数据

我们将配置 Superset,以便从 RisingWave 读取数据并进行可视化。

将 RisingWave 连接到 Superset

可以在 Apache Superset 中将 RisingWave 作为数据源,使用 RisingWave 中的表和物化视图进行可视化和创建看板。要了解该过程,请按照 配置 Superset 从 RisingWave 读取数据 一文中的说明进行操作。

成功将 RisingWave 连接到 Apache Superset 后,我们可将 RisingWave 中的物化视图添加为数据集,以创建表、各种图表和综合看板。

使用 Apache Superset 可视化数据:表、图表和看板

此表由 iot_mv 数据集生成,显示温度传感器 ID、温度读数以及每个读数相应的时间戳等信息。

温度传感器表: 温度传感器 ID、温度读数和时间戳

此表也由 iot_mv 数据集生成,显示湿度传感器 ID、湿度读数以及每个读数相应的时间戳等详细信息。它全面展示了在 iot_mv 物化视图中捕获和存储的湿度数据。

湿度传感器表: 湿度传感器 ID、湿度读数和时间戳

此条形图由 avg_temperature_mv 数据集生成,显示了温度传感器在预定义的 1 分钟时间窗口内获取的平均温度。

平均温度传感器图表:显示温度传感器在 1 分钟窗口内获取的平均温度值

此折线图由 avg_humidity_mv 数据集生成,显示了湿度传感器在指定的 1 分钟时间窗口内获取的平均湿度。

平均湿度传感器图表:显示湿度传感器在 1 分钟窗口内获取的平均湿度值

此综合看板呈现了一系列图表,有助于全面实时监控物联网设备。通过对每个相应时间戳的温度和湿度传感器读数进行深入分析,获取有价值的见解,使用户能够做出明智的决策,并实现对工业物联网设备的有效监控。

物联网设备实时监控看板:基于温度和湿度传感器

总结

本文逐步介绍了如何利用 NATS JetStream、RisingWave 和 Superset 构建实时物联网监控解决方案。以上三个系统的设置过程简单省力,资源效率高且具有强大的可扩展性,是实时物联网应用的理想组合。通过三者的无缝集成,不到一小时即可创建一个实时物联网看板。简而言之,这展示了物联网设备背景下 NATS JetStream、RisingWave 和 Apache Superset 在工业流程中的无缝集成,并通过可视化和看板实现了实时分析和监控。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/521823.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Pytorch数据结构:GPU加速

文章目录 一、GPU加速1. 检查GPU可用性:2. GPU不可用需要具体查看问题3. 指定设备4.将张量和模型转移到GPU5.执行计算:6.将结果转移回CPU 二、转移原理1. 数据和模型的存储2. 数据传输3. 计算执行4. 设备管理5.小结 三、to方法的参数类型 一、GPU加速 .…

html写一个登录注册页面

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>注册登录界面Ⅰ</title><link rel"stylesheet" href"https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.mi…

GA-SVM,基于GA遗传算法优化SVM支持向量机回归预测(多输入单输出)

基于遗传算法&#xff08;Genetic Algorithm, GA&#xff09;优化支持向量机&#xff08;Support Vector Machine, SVM&#xff09;用于回归预测是一个常见的任务。在这个任务中&#xff0c;我们使用GA来寻找SVM的最佳超参数配置&#xff0c;以最大化回归性能指标&#xff0c;例…

力控机器人原理及力控制实现

力控机器人原理及力控制实现 力控机器人是一种能够感知力量并具有实时控制能力的机器人系统。它们可以在与人类进行精准协作和合作时&#xff0c;将力传感技术&#xff08;Force Sensing Technology&#xff09;和控制算法&#xff08;Control Algorithm&#xff09;结合起来&a…

C++STL--排序算法

sort 使用快速排序,平均性能好O(nlogn),但最差情况可能很差O(n^2)。不稳定。 sort(v.begin(),v.end());//对v容器进行排序,默认升序 sort(v.begin(),v.end(),greater<int>());//降序排序对于支持随机访问的迭代器的容器&#xff0c; 都可以利用sort算法直接对其进行排序…

克罗地亚公司注册

克罗地亚是一个发达的资本主义国家&#xff0c;经济基础良好&#xff0c;旅游建筑造船和制药等产业发展水平较高&#xff0c;优质的基础设施&#xff0c;低成本的多语种和高技能劳动力&#xff0c;有力的地理环境&#xff0c;使旅游业发展充满活力&#xff0c;克罗地亚政府承诺…

vue+elementUI实现表格组件的封装

效果图&#xff1a; 在父组件使用表格组件 <table-listref"table":stripe"true":loading"loading":set-table-h"slotProps.setMainCardBodyH":table-data"tableData":columns"columns.tableList || []":ra…

重磅!天途推出平安校园管理平台

天途平安校园管理平台&#xff0c;是围绕校园安全事件开发的一款智能监控与巡逻系统。系统通过大疆机场、无人机和校园内的监控硬件等多端传输的视频和图片信息&#xff0c;经过 AI分析处理后形成告警信息并及时通知学校安保人员。 天途平安校园管理平台 平安校园管理平台优势 …

【深度学习】从基础原理到未来挑战的全面探索

深度学习的基本原理 深度学习&#xff0c;一种模拟人脑分析和处理数据的机器学习技术&#xff0c;已成为人工智能研究中最令人兴奋的进展之一。其核心在于构建和训练神经网络&#xff0c;这些网络由多个层次组成&#xff0c;每一层都能从输入数据中提取并转换特征。随着数据层层…

[Java线程池]ExecutorService|CompletionService的区别与选择

这段时间对业务系统做了个性能测试&#xff0c;其中使用了较多线程池的技术&#xff0c;故此做一个技术总结。 这次总结的内容比较多&#xff0c;主要是四个&#xff1a; ExecutorServiceCompletionServiceRunnableCallable 前两个是线程池相关接口&#xff0c;后两个是多线…

《手把手教你》系列基础篇(七十四)-java+ selenium自动化测试-框架设计基础-TestNG实现DDT - 上篇(详解教程)

1.简介 上一篇文章中宏哥简单的讲解了一下通过xml文件传递参数&#xff0c;这一篇宏哥讲解通过通过DataProvider传递参数&#xff0c;也就是我们常说的数据驱动测试。如何利用TestNG实现DDT&#xff08;数据驱动测试 Data Driver Test&#xff09;&#xff0c;什么是数据驱动测…

椋鸟数据结构笔记#8:二叉树的遍历、创建与销毁

萌新的学习笔记&#xff0c;写错了恳请斧正。 链式二叉树 这篇笔记我们讨论基于链式二叉树&#xff0c;其节点的数据结构如下&#xff1a; typedef int BTDatatype;typedef struct BTNode {BTDataType data;struct BTNode* left;struct BTNode* right; } BTNode;二叉树的遍历…

STM32CubeMX配置步骤详解六 —— 时钟及其它内部参数配置(1)

接前一篇文章&#xff1a;STM32CubeMX配置步骤详解五 —— 基础配置&#xff08;2&#xff09; 本文内容主要参考&#xff1a; STM32CUBEMX配置教程&#xff08;一&#xff09;基础配置-CSDN博客 野火STM32系列HAL库开发教程 —— 第12讲 STM32的复位和时钟控制&#xff08;第…

环形链表 - LeetCode 热题 25

大家好&#xff01;我是曾续缘&#x1f970; 今天是《LeetCode 热题 100》系列 发车第 25 天 链表第 4 题 ❤️点赞 &#x1f44d; 收藏 ⭐再看&#xff0c;养成习惯 环形链表 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可…

2-3 AUTOSAR ASW Runable可运行实体

返回总目录->返回总目录<- 目录 一、概述 二、RTE Event 一、概述 运行实体(Runnable Entity,RE)是一段可执行的代码,其包含实际实现的函数(具体的逻辑算法或者操作)。一个软件组件可以包含一个或者多个运行实体。 Runnable就是SWC中的函数,而在AutoSAR架构在被…

【云计算】云数据中心网络(一):VPC

云数据中心网络&#xff08;一&#xff09;&#xff1a;VPC 1.什么是 VPC2.VPC 的组成2.1 虚拟交换机2.2 虚拟路由器 3.VPC 网络规划3.1 VPC 数量规划3.2 交换机数量规划3.3 地址空间规划3.4 不同规模企业地址空间规划实践 4.VPC 网络高可靠设计4.1 单地域单可用区部署4.2 单地…

[StartingPoint][Tier1]Funnel

Task 1 How many TCP ports are open? (打开了多少个 TCP 端口&#xff1f;) # nmap -sS -T4 10.129.224.226 --min-rate 1000 2 Task 2 What is the name of the directory that is available on the FTP server? (FTP 服务器上可用的目录名称是什么&#xff1f;) $ n…

爬虫 新闻网站 以湖南法治报为例(含详细注释,控制台版) V3.0 升级 自定义查询关键词、时间段、粗略判断新闻是否和优化营商环境相关,避免自己再一个个判断

目标网站&#xff1a;湖南法治报 爬取目的&#xff1a;为了获取某一地区更全面的在湖南法治报的已发布的和优化营商环境相关的宣传新闻稿&#xff0c;同时也让自己的工作更便捷 环境&#xff1a;Pycharm2021&#xff0c;Python3.10&#xff0c; 安装的包&#xff1a;requests&a…

强力推荐一款具有故障保护和CAN FD 功能的隔离CAN收发器 SiLM5150S

控制器局域网总线(CAN&#xff0c;Controller Area Network)&#xff0c;是一种用于实时应用的串行通讯协议总线&#xff0c;它可以使用双绞线来传输信号&#xff0c;是目前应用最广泛的现场总线之一。CAN协议具有实时性强、可靠性高、传输距离远的特点&#xff0c;适用于各种复…