使用 OpenCV 进行图像模糊度检测(拉普拉斯方差方法)

写在前面


  • 工作中遇到,简单整理
  • 人脸识别中,对于模糊程度较高的图像数据,识别率低,错误率高。
  • 虽然使用 AdaFace 模型,对低质量人脸表现尤为突出。
  • 但是还是需要对 模糊程度高的图像进行丢弃处理
  • 当前通过阈值分类,符合要求的进行特性提取
  • 实际应用中,可以维护一个质量分数
  • 比如由 模糊程度图片字节大小人脸姿态评估(欧拉角)等 算出一个综合质量分,用于人脸归类/聚类
  • 理解不足小伙伴帮忙指正

对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》


模糊度检测算法来自 :https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/

具体实现方式小伙伴可直接看原文

这种方法起作用的原因是由于拉普拉斯算子本身的定义,它用于测量图像的二阶导数。拉普拉斯突出显示包含快速强度变化的图像区域,与 Sobel 和 Scharr 算子非常相似。而且,就像这些运算符一样,拉普拉斯通常用于边缘检测。这里的假设是,如果图像包含高方差,则存在广泛的响应,包括边缘类和非边缘类,代表正常的焦点图像。但是,如果方差非常低,则响应的分布很小,表明图像中的边缘非常小。众所周知,图像越模糊,边缘就越少

下面为原文的 Demo

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File    :   detect_blur.py
@Time    :   2023/07/24 22:57:51
@Author  :   Li Ruilong
@Version :   1.0
@Contact :   liruilonger@gmail.com
@Desc    :   图片模糊度检测
"""


# here put the import lib

# import the necessary packages
from imutils import paths
import cv2
import os

def variance_of_laplacian(image):
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	# compute the Laplacian of the image and then return the focus
	# measure, which is simply the variance of the Laplacian
	return cv2.Laplacian(gray, cv2.CV_64F).var()


# loop over the input images
for imagePath in paths.list_images("./res/mh"):
	# load the image, convert it to grayscale, and compute the
	# focus measure of the image using the Variance of Laplacian
	# method
	image = cv2.imread(imagePath)
	fm = variance_of_laplacian(image)
	text = "Not Blurry"
	print(fm)
	# if the focus measure is less than the supplied threshold,
	# then the image should be considered "blurry"
	if fm < 100:
		text = "Blurry"
	# show the image
	file_name = os.path.basename(imagePath)
	cv2.imwrite(str(fm)+'__' + file_name , image)
	

核心代码:

cv2.Laplacian(gray, cv2.CV_64F).var()

如果为 Image.image ,可以使用下的方式

def variance_of_laplacian(image):
    """
    @Time    :   2023/07/25 01:57:44
    @Author  :   liruilonger@gmail.com
    @Version :   1.0
    @Desc    :   模糊度检测
                 Args:
                   
                 Returns:
                   void
    """
    numpy_image = np.array(image)
    cv2_image = cv2.cvtColor(numpy_image, cv2.COLOR_RGB2BGR)
    gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)
	# compute the Laplacian of the image and then return the focus
	# measure, which is simply the variance of the Laplacian
    return cv2.Laplacian(gray, cv2.CV_64F).var()

实际测试中发现,阈值设置为 100 相对来说比较合适,当然如何数据集很大,可以考虑 提高阈值,当模糊度大于 1000 时,一般为较清晰图片,低于 100 时,图片模糊严重

下面为对一组较模糊数据进行检测

在这里插入图片描述

最后一个图像,模糊度为 667 ,其他为 200 以内

(AdaFace) C:\Users\liruilong\Documents\GitHub\AdaFace_demo>python detect_blur.py
130.99918569797578
97.54477372302556
70.30346984100659
95.56028915335366
77.70006004883219
107.2065965492792
93.43007114319839
75.44132565995248
127.50238903320515
98.11810838476116
69.49917570127641
132.46578324273048
99.2095025510204
92.97255942246558
93.33812691062155
667.4883318795927

博文部分内容参考

© 文中涉及参考链接内容版权归原作者所有,如有侵权请告知 😃


https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/


© 2018-2023 liruilonger@gmail.com, All rights reserved. 保持署名-非商用-相同方式共享(CC BY-NC-SA 4.0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/52113.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java开发中的分层开发和整洁架构

分层开发(横向拆分) 分层开发的概念: maven多模块开发项目管理.可以利用这种管理功能,实现一个项目的多层次模块开发–分层开发. 比如,当前项目HelloController依赖HelloService 这样做目的: 复杂开发过程.解耦(不调整依赖关系,无法解耦).分层开发(横向拆分)和纵向拆分的区别…

c# 此程序集中已使用了资源标识符

严重性 代码 说明 项目 文件 行 禁止显示状态 错误 CS1508 此程序集中已使用了资源标识符“BMap.NET.WindowsForm.BMapControl.resources” BMap.NET.WindowsForm D:\MySource\Decompile\BMap.NET.WindowsForm\CSC 1 活动 运行程序时&a…

【机器学习】Feature Engineering and Polynomial Regression

Feature Engineering and Polynomial Regression 1. 多项式特征2. 选择特征3. 缩放特征4. 复杂函数附录 首先&#xff0c;导入所需的库&#xff1a; import numpy as np import matplotlib.pyplot as plt from lab_utils_multi import zscore_normalize_features, run_gradien…

session反序列化+SoapClientSSRF+CRLF

文章目录 session反序列化SoapClientSSRFCRLF前言bestphps revengecall_user_func()方法的特性SSRFCRLF组合拳session反序列化 解题步骤总结 session反序列化SoapClientSSRFCRLF 前言 从一道题分析通过session反序列化出发SoapClientSSRF利用CRLF解题 bestphp’s revenge 首…

超详细的74HC595应用指南(以stm32控制点阵屏为例子)

74HC595是一款常用的串行输入/并行输出&#xff08;Serial-in/Parallel-out&#xff09;移位寄存器芯片&#xff0c;在数字电子领域有着广泛的应用。它具有简单的接口和高效的扩展能力&#xff0c;成为了许多电子爱好者和工程师们的首选之一。本文将深入介绍74HC595芯片的功能、…

UE5、CesiumForUnreal加载无高度地形

文章目录 1.实现目标2.实现过程3.参考资料1.实现目标 在UE5中,CesiumForUnreal插件默认的地形都是带高度的,这里加载没有高度的地形,即大地高程为0,GIF动图如下: 2.实现过程 参考官方的教程,下载无高度的DEM,再切片加载到UE中。 (1)下载无高度地形DEM0。 在官方帖子…

网络安全(黑客)自学——从0开始

为什么学习黑客知识&#xff1f;有的人是为了耍酷&#xff0c;有的人是为了攻击&#xff0c;更多的人是为了防御。我觉得所有人都应该了解一些安全知识&#xff0c;了解基本的进攻原理。这样才可以更好的保护自己。这也是这系列文章的初衷。让大家了解基本的进攻与防御。 一、怎…

学习中遇到的好博客

c日志工具之——log4cpp ECU唤醒的本质就是给ECU供电。 小文件&#xff1a;零拷贝技术 传输大文件&#xff1a;异步 IO 、直接 IO&#xff1a;如何高效实现文件传输&#xff1a;小文件采用零拷贝、大文件采用异步io直接io (123条消息) Linux网络编程 | 彻底搞懂…

Pytest学习教程_装饰器(二)

前言 pytest装饰器是在使用 pytest 测试框架时用于扩展测试功能的特殊注解或修饰符。使用装饰器可以为测试函数提供额外的功能或行为。   以下是 pytest 装饰器的一些常见用法和用途&#xff1a; 装饰器作用pytest.fixture用于定义测试用例的前置条件和后置操作。可以创建可重…

6.2.tensorRT高级(1)-第一个完整的分类器程序

目录 前言1. CNN分类器2. 补充知识2.1 知识点2.2 智能指针封装 总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 tensorRT …

【雕爷学编程】MicroPython动手做(13)——掌控板之RGB三色灯

知识点&#xff1a;什么是掌控板&#xff1f; 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片&#xff0c;支持WiFi和蓝牙双模通信&#xff0c;可作为物联网节点&#xff0c;实现物联网应用。同时掌控板上集成了OLED…

第26天-秒杀服务(秒杀系统设计与实现)

1.秒杀设计 1.1.秒杀业务 秒杀具有瞬间高并发特点&#xff0c;针对这一特点&#xff0c;必须要做限流异步缓存&#xff08;页面静态化&#xff09;独立部署。 限流方式&#xff1a; 前端限流&#xff0c;一些高并发的网站直接在前端页面开始限流&#xff0c;例如&#xff1a…

vue项目环境 搭建

1、安装nodejs 2、安装vue-cli, npm i -g vue/cli-init 3、初始化项目 vue init webpack test 4、运行 cd test npm run dev

看完这篇 教你玩转渗透测试靶机Vulnhub——HarryPotter:Aragog(1.0.2)

Vulnhub靶机HarryPotter:Aragog渗透测试详解 Vulnhub靶机介绍&#xff1a;Vulnhub靶机下载&#xff1a;Vulnhub靶机安装&#xff1a;Vulnhub靶机漏洞详解&#xff1a;①&#xff1a;信息收集&#xff1a;②&#xff1a;漏洞发现&#xff1a;③&#xff1a;漏洞利用&#xff1a;…

解决eclipse 打开报错 An error has occurred. See the log file null.

解决eclipse 打开报错an error has ocurred. See the log file null 出现原因&#xff1a;安装了高版本的jdk,更换 jdk 版本&#xff0c;版本太高了。 解决方案&#xff1a;更改环境变量 改成 jkd 1.8

Flowable基础

简介 Flowable 是 BPMN 的一个基于 java 的软件实现&#xff0c;不过 Flowable 不仅仅包括 BPMN &#xff0c;还有 DMN 决策表和 CMMN Case 管理引擎&#xff0c;并且有自己的用户管理、微服务 API 等一系列功能&#xff0c; 是一个服务平台。 官方手册&#xff1a; https://…

05 http连接处理(中)

05 http连接处理&#xff08;中&#xff09; 流程图与状态机 从状态机负责读取报文的一行&#xff0c;主状态机负责对该行数据进行解析&#xff0c;主状态机内部调用从状态机&#xff0c;从状态机驱动主状态机 主状态机 三种状态&#xff0c;标识解析位置 CHECK_STATE_RE…

#P0999. [NOIP2008普及组] 排座椅

题目描述 上课的时候总会有一些同学和前后左右的人交头接耳&#xff0c;这是令小学班主任十分头疼的一件事情。不过&#xff0c;班主任小雪发现了一些有趣的现象&#xff0c;当同学们的座次确定下来之后&#xff0c;只有有限的 DD 对同学上课时会交头接耳。 同学们在教室中坐…

Spring源码(三)Spring Bean生命周期

Bean的生命周期就是指&#xff1a;在Spring中&#xff0c;一个Bean是如何生成的&#xff0c;如何销毁的 Bean生命周期流程图 1、生成BeanDefinition Spring启动的时候会进行扫描&#xff0c;会先调用org.springframework.context.annotation.ClassPathScanningCandidateCompo…

【Linux】进程轻松入门

目录 一&#xff0c; 冯* 诺依曼体系结构 1&#xff0c;存储结构 ​编辑 二&#xff0c; 操作系统 1&#xff0c;概念 2&#xff0c;设计OS的目的 3&#xff0c;定位 4&#xff0c;如何理解 "管理" 5&#xff0c; 总结 三&#xff0c;进程 1. 概念 那么…