list的使用

前言

我们前面已经对string和vector进行了学习使用,以及对他们的底层进行了模拟实现!本期我们继续学习STL的另外一个容器---list。

本期内容介绍

什么是list?

list的常用接口

什么是list?

还是来看看官方的文档说明!

这里通过官方文档我们可以知道!list是一个带头双向循环的链表!在插入和删除时,时间复杂度是常量级别的!

list常用接口

在正式的开始介绍接口使用前,我们还是来了解一下类型重命名!

这里主要用到的就是上面的三个! value_type 就是T, reference 是value_type&, size_type 就是size_t

构造、拷贝构造、赋值拷贝、析构

list<int> lt1;//空构造

list<int> lt2(10, 6);//n 个 val构造

vector<int> v = { 1, 2,4,56,7,8,-1 };

list<int> lt3(v.begin(), v.end());//迭代器区间构造

list<int> lt4(lt2);//拷贝构造

这里除了介绍这些常见的外!这里在穿插一个C++11引入的一个非常好用的,初始化序列初始化!

这个在上期vector的模拟实现已经介绍了,auto ret = {1,2,3};此时的ret就是initializer_list<int>。

list<int> lt5 = { 1,2,3,4,5 };//C++11的初始化序列初始化

list<int> lt4(lt2);//拷贝构造

list<int> lt5 = { 1,2,3,4,5 };//C++11的初始化序列初始化

lt5 = lt4;//赋值拷贝

析构还是一样的:清理资源、释放空间~!

迭代器

正向

list<int> lt = { 1,2,3,4,5 };//C++11的初始化序列初始化
const list<int> clt = { 10, 20,30, 40 };

list<int>::iterator it = lt.begin();//正向
while (it != lt.end())
{
	cout << *it << " ";
	++it;
}
cout << endl;

list<int>::const_iterator cit = clt.begin();//const正向
while (cit != clt.end())
{
	cout << *cit << " ";
	++cit;
}
cout << endl;

支持迭代器必然支持范围for,范围for就是傻傻的替换迭代器!

反向

list<int>::reverse_iterator it = lt.rbegin();//反向
while (it != lt.rend())
{
	cout << *it << " ";
	++it;
}
cout << endl;

list<int>::const_reverse_iterator cit = clt.rbegin();//const反向
while (cit != clt.rend())
{
	cout << *cit << " ";
	++cit;
}
cout << endl;

const和非const的区别主要还是权限的问题~!如果不修改建议使用const的!!!

注意:这里的迭代器需要指定类域的原因是模板的原因,模板参数不一样就是一个类,为了让迭代器用法统且不冲突,需要指定是哪个类的迭代器~!

容量

empty

list<int> lt = { 1,2,3,4,5,6,7,8,9 };
bool ret = lt.empty();
cout << ret << endl;

size

list<int> lt = { 1,2,3,4,5,6,7,8,9 };
size_t sz = lt.size();
cout << sz << endl;

元素访问

这里文档上说的很清楚:如果是空链表的话,你去取头和尾的数据是未定义的行为!!因为当链表为空时,头尾就是哨兵位的头结点,我们只是规定头结点的next指向实际链表的第一个节点,_prev指向对后一个元素,并未规定头结点的数据域存的是啥,所以如果为空链表,你去取就是未定义行为!

这和begin迭代器不一样,迭代器是返回链表的元素,这里是返回引用!

list<int> lt = { 1,2,3,4,5,6,7,8,9 };
int front = lt.front();
int back = lt.back();

cout << front << " " << back << endl;

const list<int> clt = { 10, 20,30, 40 };
int cfront = clt.front();
int cback = clt.back();

cout << cfront << " " << cback << endl;

修改

删除的这三个是涉及右值引用!在后面的C++11那一期会专门介绍~!

assign

list<int> lt = { 1,2,3,4,5,6,7,8,9,10 };
list<int> lt2;
list<int> lt3 = { 0, 2,4,6,8 };
lt.assign(5, 1);
for (auto& e : lt)
{
	cout << e << " ";
}
cout << endl;

lt2.assign(++lt3.begin(), --lt3.end());
for (auto& e : lt2)
{
	cout << e << " ";
}
cout << endl;

这个和构造函数那里很像,但是不一样!这个是已经存的你再去把他的原来内容用指定的内容替换掉!

push_front

list<int> lt = { 1,2,3,4 };
lt.push_front(0);
for (auto& e : lt)
{
	cout << e << " ";
}
cout << endl;

pop_front

list<int> lt = { 1,2,3,4 };

lt.pop_front();
for (auto& e : lt)
{
	cout << e << " ";
}
cout << endl;

push_back

list<int> lt = { 1,2,3,4 };

lt.push_back(-5);
for (auto& e : lt)
{
	cout << e << " ";
}
cout << endl;

pop_back

list<int> lt = { 1,2,3,4 };

lt.pop_back();
for (auto& e : lt)
{
	cout << e << " ";
}
cout << endl;

insert

list<int> lt = { 1,2,3,4 };
lt.insert(lt.begin(), 0);//在pos位置插入一个val

lt.insert(++lt.begin(), 5, -1);//在pos位置插入n个val

vector<int> v = { 90, 98, 23,34,56 };
lt.insert(lt.begin(), v.begin(), v.end());//在pos位置插入一个迭代器区间

erase

list<int> lt = { 1,2,3,4 };
lt.erase(lt.begin());//删除pos位置的元素

lt.erase(++lt.begin(), lt.end());//删除一段迭代器区间

resize

由于是链表,所以不用考虑扩容的问题!这里的resize就要变成了尾插和尾插了!

list<int> lt = { 1,2,3,4 };

lt.resize(3);//相当于尾删,只保留前n个元素

lt.resize(10, 0);//相当于尾插到节点数目为10,不够的就是0

swap

还是和前面的两个容器的一样,他这里的是对list对象的属性进行交换!

list<int> lt1 = { 1,2,3,4 };
list<int> lt2 = { 10,20,30,40 };

lt1.swap(lt2);

clear

list<int> lt = { 1,2,3,4 };

lt.clear();
cout << lt.size() << endl;

其他操作

splice

splice是粘结,结合的意思!这个接口的作用是转移链表的元素!重载了三个:

将一个链表的数据转移到另一个链表的pos位置

将一个链表的i位置的元素转移到另一个链表的pos位置

将一个链表的一个迭代器区间转移到另一个链表的pos位置

list<int> lt1 = { 1,2,3,4,5,6,7,8,9 };
list<int> lt2 = { 0, -1,-2 };

lt1.splice(lt1.begin(), lt2);//在pos位置,将x转移过来

lt2.splice(lt2.end(), lt1, ++lt1.begin());//在pos位置将x的i位置的一个元素转移过来

lt2.splice(++lt2.begin(), lt1, ++lt1.begin(), --lt1.end());//在pos位置将x的一段迭代器区间给转移过来

remove

这个函数的作用是:删除所有特定的值!

list<int> lt = { 2,3,2,2,2,4,5,6,1,2 };
lt.remove(2);
print(lt);

remove_if

这个函数的作用是删除符合条件的元素,这里的形参可以是一个对象,也可以是一个函数指针!

bool is_odd(const int& val)
{
	return val % 2 == 0;
}

struct single_digit
{
	bool operator() (const int& val)
	{
		return val < 10;
	}
};

void test_list7()
{
	list<int> lt = { 2,3,2,2,2,4,5,6,1,2,21,11,23 };

	lt.remove_if(is_odd);
	print(lt);

	lt.remove_if(single_digit());
	print(lt);
}

unique

一看名字就知道这是去重的,但是这个去重是去重连续相邻的重复元素

list<int> lt = { 2,3,2,2,2,2,4,5,6,1,2,21,11,23 };

lt.unique();
print(lt);

merge

这接口的作用就是:合并两个链表!但注意:这两个链表必须是有序的!!!!

list<int> lt1 = { 1,3,7,8,9 };
list<int> lt2 = { 2,4,5,7,9 };

lt1.merge(lt2);
print(lt1);
print(lt2);//此时lt2是空的

sort

这个接口的作用是:对链表进行排序!它的底层是归并排序!

list<int> lt = { 1,3,2,1,-1,7,8,9 };

lt.sort();
print(lt);

但是这个效率就很,,,不太好~!不是归并不行,是链表排序不太行!

OK,举个例子:

void test_op1()
{
	srand(time(0));
	const int N = 1000000;

	list<int> lt1;
	list<int> lt2;

	vector<int> v;

	for (int i = 0; i < N; ++i)
	{
		auto e = rand() + i;
		lt1.push_back(e);
		v.push_back(e);
	}

	int begin1 = clock();
	// 
	sort(v.begin(), v.end());
	int end1 = clock();

	int begin2 = clock();
	lt1.sort();
	int end2 = clock();

	printf("vector sort:%d\n", end1 - begin1);
	printf("list sort:%d\n", end2 - begin2);
}

这个代码是将同样的数据插入到一个vector和一个list,分别对他们排序,看他们排序花费的时间!

差了两倍多!!!再来看一个:

void test_op2()
{
	srand(time(0));
	const int N = 1000000;

	list<int> lt1;
	list<int> lt2;

	for (int i = 0; i < N; ++i)
	{
		auto e = rand();
		lt1.push_back(e);
		lt2.push_back(e);
	}

	int begin1 = clock();
	// vector

	vector<int> v(lt2.begin(), lt2.end());
	// 
	sort(v.begin(), v.end());

	// lt2
	lt2.assign(v.begin(), v.end());

	int end1 = clock();

	int begin2 = clock();
	lt1.sort();
	int end2 = clock();

	printf("list copy vector sort copy list sort:%d\n", end1 - begin1);
	printf("list sort:%d\n", end2 - begin2);
}

这个代码是:先将两个链表插入相同的数据,在将一个放到vector中排序,然后再拷回来,一个是直接调用链表的sort!

直接差了4倍!所以,list的这个sort效率真不咋地,建议少用~!

reverse

这个函数的作用就是反转链表!

list<int> lt = { 1,2,3,4,5,6,7,8 };
lt.reverse();
print(lt);

非成员函数swap

有这个接口的原因和前面的几个容器一样!防止调到标准库里面的那个!

list<int> lt1 = { 1,2,3};
list<int> lt2 = { 10,20,30, 50};

swap(lt1, lt2);
print(lt1);
print(lt2);

OK,本期内容就分享到这里,我们下期再见~!

结束语:不要因为别人的三言两语就打破你的深思熟虑!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/520190.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[蓝桥杯 2017 国 C] 合根植物

[蓝桥杯 2017 国 C] 合根植物 题目描述 w 星球的一个种植园&#xff0c;被分成 m n m \times n mn 个小格子&#xff08;东西方向 m m m 行&#xff0c;南北方向 n n n 列&#xff09;。每个格子里种了一株合根植物。 这种植物有个特点&#xff0c;它的根可能会沿着南北…

【MySQL】增删改查操作(基础)

文章目录 1、新增操作&#xff08;Create&#xff09;1.1单行数据全列插入1.2多行数据指定列插入 2、查询操作&#xff08;Retrieve&#xff09;2.1全列查询2.2指定列查询2.3指定列查询2.4别名&#xff08;as&#xff09;2.5去重&#xff08;distinct&#xff09;2.6排序&#…

数据结构—图

图的基本概念 图就是由顶点的有穷非空集合和顶点之间的边组成的集合。通常表示为&#xff1a;G(V,E)&#xff0c;其中&#xff0c;G 表示一个图&#xff0c;V 表示顶点的集合&#xff0c;E 表示边的集合。 顶点 图中的数据元素&#xff0c;我们称之为顶点&#xff0c;图至少有…

常见现代卷积神经网络(Pytorch 09)

本章将介绍现代的 卷积神经网络架构&#xff0c;许多现代卷积神经网络的研究都是建立在这一章的基础上的。在本章中的每一个模型都曾一度占据主导地位&#xff0c;其中许多模型都是 ImageNet竞赛 的优胜者。ImageNet竞赛自2010年以来&#xff0c;一直是计算机视觉中监督学习进展…

面试题——JVM老年代空间担保机制(我的想法)

这里借用一下人家的图&#xff0c;来说一下我的想法&#xff0c;嘻嘻。。。。 原文链接&#xff1a;一道面试题&#xff1a;JVM老年代空间担保机制-CSDN博客? 嗯&#xff0c;我觉得老年代担保机制的主要作用就是避免频繁触发FULL GC&#xff0c;这其实也是因为年轻代Minor GC…

Java项目:基于Springboot+vue社区医院管理系统设计与实现(源码+数据库+毕业论文)

一、项目简介 本项目是一套基于Springbootvue社区医院管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功能…

数据结构之顺序表的相关知识点及应用

个人主页&#xff08;找往期文章包括但不限于本期文章中不懂的知识点&#xff09;&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 目录 顺序表的概念及结构 顺序表的分类 顺序表的实现 在顺序表中增加数据 在顺序表中删除数据 在顺序表中查找数据 顺序表源码 顺序表的概念…

浮动辊位移测量功能块(CODESYS ST代码)

1、张力测量+标定(ST代码) 张力测量+标定(ST代码)_动态舞轮控制张力-CSDN博客文章浏览阅读804次。跳舞轮对应张力调节范围,我们可以通过改变气缸的气压方式间接改变,张力跳舞轮在收放卷闭环控制上的详细应用,可以参看下面的文章链接,这里我们主要讨论精密可调气阀的模拟量…

Java | Leetcode Java题解之第6题Z字形变换

题目&#xff1a; 题解&#xff1a; class Solution {public String convert(String s, int numRows) {int n s.length(), r numRows;if (r 1 || r > n) {return s;}int t r * 2 - 2;int c (n t - 1) / t * (r - 1);char[][] mat new char[r][c];for (int i 0, x …

[Spring Cloud] gateway全局异常捕捉统一返回值

文章目录 处理转发失败的情况全局参数同一返回格式操作消息对象AjaxResult返回值状态描述对象AjaxStatus返回值枚举接口层StatusCode 全局异常处理器自定义通用异常定一个自定义异常覆盖默认的异常处理自定义异常处理工具 在上一篇章时我们有了一个简单的gateway网关 [Spring C…

比selenium体验更好的ui自动化测试工具: cypress介绍

话说 Cypress is a next generation front end testing tool built for the modern web. And Cypress can test anything that runs in a browser.Cypress consists of a free, open source, locally installed Test Runner and a Dashboard Service for recording your tests.…

leetcode077——排序链表

题目&#xff1a; 给定链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [4,2,1,3] 输出&#xff1a;[1,2,3,4] 思路&#xff1a; 1.找链表中点【使用快慢指针 慢指针每次移动一步&#xff0c;快指针每…

基于单片机12864的出租车计价器设计

**单片机设计介绍&#xff0c;基于单片机12864的出租车计价器设计 文章目录 一 概要二、功能设计三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机和12864液晶显示屏的出租车计价器设计&#xff0c;主要是利用单片机的强大控制能力和液晶显示屏的直观显示特性&…

牛客网BC-125 序列中整数去重复(难题讲解)

题目如下 --------------------------------------------------------------------------------------------------------------------------------- 题目讲解&#xff08;思路&#xff09; -------------------------------------------------------------------------------…

单一职责原则

1.1 阅读干吗不直接用手机&#xff1f; 电子阅读器比较专注&#xff0c;而手机功能比较多&#xff0c;影响专注。 1.2 手机不纯粹 手机确实很方便。但是现在的手机就是一台小型智能电脑。它不仅能打电话&#xff0c;还能听音乐、看电影电视、与个人交流、与一群人群聊&#…

基于java+SpringBoot+Vue的大学生入学审核系统设计与实现

基于javaSpringBootVue的大学生入学审核系统设计与实现 开发语言: Java 数据库: MySQL技术: SpringBoot VUE工具: IDEA/Eclipse、Navicat、Maven 系统展示 前台展示 入学办理模块&#xff1a;学生可以提交入学申请并跟踪入学办理进度。 后台展示 学生管理模块&#xff1…

【Docker系列】在 Linux 上安装 Docker Compose 的简明步骤

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

前端学习之DOM编程案例:抽奖案例

代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>抽奖案例</title><style>*{margin: 0;padding: 0;}</style> </head> <body><div id"container"&g…

【放假第3天】幻兽帕鲁 雾锁王国 我的世界 游戏云服务器选购指南 附最新价格对比表 新手、小白秒懂

更新日期&#xff1a;4月6日&#xff08;半年档 价格回调&#xff0c;京东云采购季持续进行&#xff09; 本文纯原创&#xff0c;侵权必究 【云服务器推荐】价格对比&#xff01;阿里云 京东云 腾讯云 选购指南视频截图 《最新对比表》已更新在文章头部—腾讯云文档&#xf…

LeetCode 1483.树节点的第 K 个祖先:树上倍增

【LetMeFly】1483.树节点的第 K 个祖先&#xff1a;树上倍增 力扣题目链接&#xff1a;https://leetcode.cn/problems/kth-ancestor-of-a-tree-node/ 给你一棵树&#xff0c;树上有 n 个节点&#xff0c;按从 0 到 n-1 编号。树以父节点数组的形式给出&#xff0c;其中 paren…