SambaNova 芯片:深入解析其架构和高性能秘诀

SambaNova——一家总部位于帕洛阿尔托的公司已经筹集了超过10亿美元的风险投资,不会直接向公司出售芯片。相反,它出售其定制技术堆栈的访问权限,该堆栈具有专门为运行最大的人工智能模型而设计的专有硬件和软件。

最近,SambaNova宣布推出了其新型SN40L处理器,该处理器拥有1020亿个晶体管,分布在1040个核心上,能够达到638teraflops运算的速度,采用TSMC的5纳米工艺制造,SN40L最引人注目的特点之一是它的三级存储系统,专为处理与AI工作负载相关的大量数据流而设计。SambaNova声称,仅由八个这样的芯片组成的节点就能够支持高达5万亿个参数的模型。这几乎是OpenAI的GPT-4大型语言模型大小的三倍,并且能够处理高达256,000个tokens的序列长度。该公司声称,与需要数百个芯片的行业标准GPU相比,这代表了总拥有成本的显著降低。

可重构数据流架构是SambaNova芯片的核心,它能够根据不同人工智能模型的需求,动态调整芯片内部的数据通路,实现高效的计算和数据流动。下面我们来详细了解一下这种架构的特点和优势。

1.可重构互连:灵活连接计算、存储和通信单元

图片

SambaNova芯片包含大量的计算单元(PCU)、存储单元(PMU)和通信交换单元(SCU),它们按阵列平铺排列。计算单元PCU集成了矢量化的单指令多数据(SIMD)流水线,专门用于高效的矩阵/向量计算操作,这是机器学习推理和训练的核心运算。存储单元PMU则是片上SRAM存储器,每个周期可存取一个数据向量,为计算单元流畅输送数据。PMU还集成了地址计算能力,用于高效管理数据访问模式。通信交换单元S负责在整个芯片范围内互连各个单元,构建一个可重配的全局互连网络,支持灵活的数据流传输。除了这些核心单元,图中还标注了控制单元CU和地址生成单元AGU等支持模块。

该架构的关键特点包括:静态配置的数据通路、显式管理芯片内外数据传输、支持数据流执行模型、以及超高的计算能力、存储带宽和网络带宽等。通过可重构互连和数据流执行模型,SambaNova能针对不同的AI模型动态调整硬件资源分配,在单个芯片上构建出高度优化和高效的数据传输通路,最大限度利用硬件能力,实现卓越的AI加速性能。

2.自动探索并确定出一种高度优化的操作映射方案

图片

一个典型的深度学习模型由多个操作组成,如卷积(Conv)、池化(Pool)、归一化(Norm)和求和(Sum)等。将这些操作高效映射到RDU芯片上需要解决许多复杂的问题,比如决定最优的操作映射方式、计算并行度、中间数据格式和存储位置等。这构成了一个设计空间极其庞大的组合优化问题。

为了解决这一挑战,SambaNova设计了一个编译器技术栈。编译器需要回答诸如"使用何种映射策略"、"采用何种调度方式"、"并行度是多少"、"中间数据存放在片上还是外部"以及"如何组织中间数据张量格式"等一系列关键问题。

通过分析模型的结构特征,并结合硬件资源的全面考虑,编译器可以自动探索并确定出一种高度优化的操作映射方案。图的下半部分展示了这样一种可能的映射结果,其中不同的操作被高效地排布在RDU的不同单元和互连通路上。

这种快速的数据流编译技术使SambaNova芯片能够针对给定的AI模型,自动生成最优的计算指令和分布式执行策略,充分利用芯片的硬件能力,突破了传统架构的性能瓶颈。该技术与灵活可重构的RDU架构紧密结合,是SambaNova实现卓越加速性能的关键所在。

3.与GPU等传统芯片的对比

图片

英伟达GPU采用的是一种更加传统的架构。GPU由大量的CUDA核心组成,每个CUDA核心包含一些计算单元和有限的寄存器文件。所有CUDA核心通过固定的总线连接到一个共享的大容量但访问延迟更高的GPU内存。这种架构对于一些密集型通用计算是非常高效的,但对于模型越来越复杂、参数越来越多的大规模机器学习任务,就显得数据传输成为了一大瓶颈。

SambaNova的动态可重配置架构可以针对具体的机器学习模型,构建近乎零开销的数据通路,使计算单元和所需数据位于极近的位置。这不仅减少了数据移动开销,还可以最大化芯片资源的利用效率。软件SambaFlow则扮演着对模型进行分析并高效映射到硬件的关键角色。

传统方式下,整个模型需要分解为多个小的 kernel 操作(比如乘法、归一化和 softmax 等),这些操作被逐个发送到 GPU 上执行。GPU 需要重复加载输入数据、执行 kernel、写回结果,并不断在片上存储和外部内存间传输数据,过程中存在大量数据移动开销和内存延迟。

而 SambaNova 芯片的"数据流"方式则将整个模型建模为一个数据流水线,包含乘法(M)、归一化(N)、softmax(S)等操作。通过可重配的互连结构,相关的数据和计算资源被高效组织,模型的各个阶段能够直接在芯片内部流动、计算,消除了大量数据传输和内存访问延迟开销。

4. 灵活性和高性能的完美结合

可重构数据流架构的优势在于,它在提供灵活性的同时,也能够实现高性能的计算。

- 灵活性:通过可重构互连和运行时映射,SambaNova芯片可以灵活适应不同的人工智能模型,不需要为每个模型设计专用的硬件结构。

- 高性能:通过将计算任务映射到最优的硬件资源,并利用数据流图揭示的并行性和局部性,SambaNova芯片可以实现极高的计算效率和性能。

新架构设计的未来展望

可重构数据流架构不仅适用于当前的人工智能模型,也为未来的模型发展提供了充分的支持和灵活性。

- 新的模型结构:通过调整数据流图和映射方式,可重构数据流架构可以快速适应新的模型结构和计算范式。

- 算法创新:可重构数据流架构为算法创新提供了更大的自由度,研究人员可以探索新的计算模式和优化技术。

- 持续演进:随着人工智能技术的不断发展,可重构数据流架构也可以随之演进,通过增加新的计算单元、优化互连拓扑等方式,不断提升性能和效率。

可重构数据流架构代表了人工智能芯片设计的一个重要方向,它通过灵活的硬件结构和智能的编译映射技术,实现了高性能、高效率、高适应性的特点,为人工智能的加速发展提供了强大的动力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/518051.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【科研笔记】知识星球不可选择内容爬虫

知识星球不可选择内容爬虫 1 背景2 实现3 拓展遗留问题1 背景 针对与知识星球中,电脑打开网页不可选择复制粘贴的问题,进行爬虫处理,获取网页的内容,并保存在本地 2 实现 需要下载python,和爬虫的第三方库selenium,可以查看博客中有关selenium的内容进行回顾。当前使用…

在云端遇见雨云:一位服务器寻觅者的指南

引言:寻觅一座云端归宿 当我踏入数字世界的边缘,带着对网络的探索与期待,我迫切需要一座安全可靠的数字栖息地。云计算技术正如一场魔法般的变革,而在这片广袤的云端中,雨云就像是一位友善的向导,引领我穿越…

最优算法100例之28-n个骰子点数和出现的次数

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的…

OpenTofu路在何方:定量分析Terraform issue数据,洞察用户需求|OpenTofu Day 闪电演讲

数澈软件 Seal 首席架构师李平辉提交的演讲议题“Alias TerraformTofu. Job’s Done, Now What?”入选 KubeCon EU 同场活动 OpenTofu Day,本文为演讲实录。 大家好,我是 Lawrence,是 Seal 的首席架构师。今天将由我为大家带来 Lightening T…

Linux: linux常见操作指令

目录 01.ls 指令 02. pwd命令 03. cd 指令 04. touch指令 05.mkdir指令(重要) 06.rmdir指令 && rm 指令(重要) 07.man指令(重要) 07.cp指令(重要) 08.mv指令&#…

如何创建一个TCP多人聊天室?

一、什么是TCP? TCP(Transmission Control Protocol)是一种可靠的 面向连接的协议 ,可以保证数据在传输过程中不会丢失、重复或乱序。 利用TCP实现简单聊天程序,需要客户端和服务器端之间建立TCP连接,并通…

【数据分析面试】10. 计算平均通勤时间(SQL:timestampdiff() 和datediff()区别)

题目 假设你在Uber工作。rides表包含了关于Uber用户在美国各地的行程信息。 编写一个查询,以获取纽约(NY)每位通勤者的平均通勤时间(以分钟为单位),以及纽约所有通勤者的平均通勤时间(以分钟为…

谈谈 MySQL 的锁

前言 在 MySQL 中,锁这个定义其实还是蛮重要的。经过我这几天的学习,我感觉锁是一个可以说难又可以说不难的知识点。难就难在锁可以与事务、多线程、并发结合在一起,这就很难了。但是,假如锁没有结合这些知识点,就单单…

产品推荐 | 中科亿海微推出亿迅®A8000金融FPGA加速卡

01、产品概述 亿迅A8000金融加速卡,是中科亿海微联合金融证券领域的战略合作伙伴北京睿智融科,将可编程逻辑芯片与金融行业深度结合,通过可编程逻辑芯片对交易行情加速解码,实现低至纳秒级的解码引擎,端到端的处理时延…

【Arthas案例】某应用依赖两个GAV-classifier不同的snakeyaml.jar,引起NoSuchMethodError

多个不同的GAV-classifier依赖冲突,引起NoSuchMethodError Maven依赖的三坐标体系GAV(G-groupId,A-artifactId,V-version) classifier通常用于区分从同一POM构建的具有不同内容的构件物(artifact)。它是可选的&#xf…

每日一题:矩阵置零

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]使用两个标记变量。 class Sol…

Pygame基础10-物理模拟

PyMunk PyMunk是一个模拟物理的库。 注意,PyMunk只是进行物理模拟,不包含可视化的功能。如果需要可视化,可使用pygame等库。 可用pip安装pymunk pip install pymunk pymunk中的概念: space: 物理空间。 包含gravity 模…

网络抓包专题

导航目录 HTTP 原理HTTPS 原理TLS 原理网络抓包原理一. 什么是抓包?二. 抓包的原理对HTTP请求进行抓包对HTTPS请求进行抓包 三. Android设备抓包问题Android6.0 及以下系统Android7.0 及以上系统方式一:方式二 HTTP 原理 HTTP 详解 点击跳转 HTTPS 原理…

MPEG-1 详解

MPEG-1 详解 MPEG-1 详解特点MPEG-1 中的运动补偿与 B 帧的引入MPEG-1 vs H.261MPEG-1 视频数据流的结构MPEG-1 视频压缩模式MPEG-1 视频解码框图MPEG-1 音频编码模式MPEG-1 audio layer 1MPEG-1 audio layer 2MPEG-1 audio layer 3 MPEG-1 音频编码框图MPEG-1 音频解码框图参考…

基于matlab解决鸡兔同笼问题

一、什么是鸡兔同笼? 鸡兔同笼问题是一种经典的数学问题,最早出自于《孙子算经》,详细成书时间不详,但可以确定的是,它不早于汉代,不晚于南北朝时期[6]。这个问题在中国数学史上具有重要的意义&#xff0c…

WEB漏洞挖掘详细教程--用户输入合规性(sql注入测试)

前置教程:WEB漏洞挖掘(SRC)详细教程--信息收集篇-CSDN博客 WEB漏洞挖掘(SRC)详细教程--身份认证与业务一致性-CSDN博客 WEB漏洞挖掘(SRC)详细教程--业务数据篡改-CSDN博客 2.4 用户输入合规性…

RabbitMQ基于Java实现消息应答

RabbitMQ 概念 RabbitMQ是一个消息中间件:它接受并转发消息。你可以把它当做一个快递站点,当你要发送一个包裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑RabbitMQ是一个快递站, 一个快递员帮你传递快件…

Golang Gin框架

1、这篇文章我们简要讨论一些Gin框架 主要是给大家一个基本概念 1、Gin主要是分为路由和中间件部分。 Gin底层使用的是net/http的逻辑,net/http主要是说,当来一个网络请求时,go func开启另一个协程去处理后续(类似epoll)。 然后主协程持续…

备战蓝桥杯---递归与DFS刷题2

1. 数据范围允许直接暴力把所有组合都写一遍,我们用Pair来存,在sort中分式比较只要把自己的分子与对方的分母乘比较即可,下面介绍一下st树的写法,具体原理就不说了,它是先[0/1,1/1]然后取分子分母的平均化成两个区间&a…

【C++】学习多态原理

目录 一、虚函数表二、多态原理三、关于动态绑定与静态绑定 一、虚函数表 先来看一段代码&#xff1a;sizeof(Base)是多少&#xff1f; class Base { public:virtual void Func1(){cout << "Func1()" << endl;} private:int _b 1; };int main() {cout…