入门用Hive构建数据仓库

在当今数据爆炸的时代,构建高效的数据仓库是企业实现数据驱动决策的关键。Apache Hive 是一个基于 Hadoop 的数据仓库工具,可以轻松地进行数据存储、查询和分析。本文将介绍什么是 Hive、为什么选择 Hive 构建数据仓库、如何搭建 Hive 环境以及如何在 Hive 中实现数据仓库的分层建模。

本篇文章先做初步讲解,后续会结合数仓建模,Kimball维度建模,从ODS到DWD、DWS、数据集市、ADS等各层进行维度表和事实表的建模。

一、什么是 Hive?

Apache Hive 是一个基于 Hadoop 的数据仓库工具,可以将结构化数据映射到 Hadoop 分布式文件系统(HDFS)上,并提供类似 SQL 的查询语言(HiveQL)来查询和分析数据。Hive 可以处理 PB 级别的数据规模,并提供了高可靠性和扩展性。

二、为什么选择 Hive 构建数据仓库?

易用性: Hive 提供了类似 SQL 的查询语言,使得用户可以轻松地进行数据查询和分析,无需学习复杂的 MapReduce 编程。

扩展性: Hive 可以处理 PB 级别的数据规模,适用于大规模数据存储和分析。

与 Hadoop 生态集成: Hive 可以与其他 Hadoop 生态系统组件(如HDFS、HBase)无缝集成,实现全面的数据管理和分析。

三、如何搭建 Hive 环境?

搭建 Hive 环境通常需要以下步骤:

1.安装 Hadoop:

首先需要安装和配置 Hadoop 分布式文件系统(HDFS)和 YARN(资源管理器)。

2.下载和配置 Hive:

下载并解压缩 Hive 的安装包,根据实际需求配置 Hive 的环境变量和配置文件。

下载 Hive: 访问 Apache Hive 官方网站(https://hive.apache.org/),下载最新版本的 Hive 安装包。

解压安装包: 使用以下命令解压缩安装包到指定目录:

tar -zxvf apache-hive-x.y.z-bin.tar.gz -C /opt

配置环境变量: 在用户的环境配置文件(如 ~/.bashrc)中添加以下配置:

export HIVE_HOME=/opt/apache-hive-x.y.z
export PATH=$PATH:$HIVE_HOME/bi

配置 Hive 配置文件: 进入 Hive 安装目录,复制 hive-default.xml.template 文件为 hive-site.xml,并进行必要的配置:

cd /opt/apache-hive-x.y.z/conf
cp hive-default.xml.template hive-site.xml

配置 hive-site.xml 文件,根据实际需求设置 Hadoop 的相关参数,如 Hadoop 的 HDFS 地址、YARN 地址等。

3.初始化元数据库:

运行 Hive 的初始化脚本,创建元数据库和初始表。

schematool -initSchema -dbType derby

这将在默认的 Derby 数据库中初始化 Hive 的元数据库。如果需要使用其他数据库,可以相应地修改配置文件并初始化。

4.启动 Hive:

启动 Hive 服务,开始使用 Hive 进行数据查询和分析。

hive

这将启动 Hive CLI,允许用户使用 HiveQL 进行数据查询和操作。也可以启动 HiveServer2 服务,允许远程连接和提交 Hive 查询。

通过以上步骤,就可以成功搭建 Hive 环境,并开始在其中构建数据仓库和进行数据分析。以下是一个完整的示例代码,演示了如何在 Hive 中创建分区表和分桶表,并进行数据查询和分析。

四、在 Hive 中实现数据仓库的分层建模

Hive 的分区表(Partitioned Table)和分桶表(Bucketed Table)是在数据仓库建模中常用的两种技术,用于提高数据查询和处理的效率。它们在 Hive 中的实现方式和用途略有不同。

1. Hive 分区表(Partitioned Table)

Hive 分区表是按照一个或多个列的值进行逻辑上的划分和存储的表格。通过分区表,可以将数据分散存储在不同的目录中,提高查询性能,同时也更便于数据管理和维护。

特点:

  • 按列值分区: 根据一个或多个列的值将数据分区存储。
  • 提高查询性能: 可以针对特定的分区进行查询,减少不必要的数据扫描,提高查询效率。
  • 便于管理: 可以根据分区进行数据管理和维护,如备份、删除、移动等操作。

示例:

假设有销售数据表 sales,我们可以按照销售日期进行分区存储:

CREATE TABLE sales (
    product_id INT,
    sale_date STRING,
    amount DOUBLE
)
PARTITIONED BY (sale_year INT, sale_month INT);

2. Hive 分桶表(Bucketed Table)

Hive 分桶表是将数据根据某一列的哈希值分桶存储的表格。分桶表通过将数据分布到不同的桶中,可以提高数据查询的效率。

特点:

  • 按哈希值分桶: 根据某列的哈希值将数据分桶存储。
  • 提高查询性能: 可以针对特定的桶进行查询,减少数据扫描,提高查询效率。
  • 均匀分布: 数据会被均匀地分布在不同的桶中,避免数据倾斜问题。

示例:

假设有销售数据表 sales,我们可以按照产品ID进行分桶存储:

CREATE TABLE sales_bucketed (
    product_id INT,
    sale_date STRING,
    amount DOUBLE
)
CLUSTERED BY (product_id) INTO 4 BUCKETS;

数据加载示例:

假设有如下的 data.csv 文件包含了销售数据:

product_id,sale_date,amount
101,2022-01-01,100.50
102,2022-01-02,150.75
103,2022-01-03,200.25
104,2022-01-04,180.00

我们可以使用以下命令将数据加载到 Hive 表中:

-- 创建分区表
CREATE TABLE sales (
    product_id INT,
    sale_date STRING,
    amount DOUBLE
)
PARTITIONED BY (sale_year INT, sale_month INT);

-- 加载数据到分区表
LOAD DATA INPATH '/path/to/data.csv' INTO TABLE sales PARTITION (sale_year=2022, sale_month=1);

通过以上示例,可以了解 Hive 分区表和分桶表的概念、特点以及如何加载数据。

3.以下是一个完整的示例代码

演示了如何在 Hive 中创建分区表和分桶表,并进行数据查询:

在 Hive 中建立数据仓库的表并插入数据,然后进行数据查询,通常需要以下步骤:

1). 创建表

在 Hive 中创建表可以使用类似于 SQL 的语法,定义表的结构和属性。

通过以上示例代码,读者可以了解如何在 Hive 中创建分区表和分桶表,并进行数据查询和分析,从而实现数据仓库的分层建模。Hive 提供了强大的数据管理和分析能力,是构建数据仓库的理想选择。

-- 创建用户表
CREATE TABLE users (
    user_id INT,
    username STRING,
    age INT,
    gender STRING,
    occupation STRING
);
2). 插入数据

在创建好的表中插入数据,可以使用 INSERT INTO 语句或者从外部数据源加载数据。

使用 INSERT INTO 插入数据:

-- 插入数据到用户表
INSERT INTO users VALUES
(1, 'Alice', 30, 'Female', 'Engineer'),
(2, 'Bob', 35, 'Male', 'Manager'),
(3, 'Charlie', 25, 'Male', 'Data Scientist');

从外部数据源加载数据:

-- 从外部数据源加载数据到用户表
LOAD DATA INPATH '/path/to/users.csv' OVERWRITE INTO TABLE users;
3). 数据查询

在 Hive 中进行数据查询可以使用类似于 SQL 的语法,执行常见的查询操作。

查询所有数据:

-- 查询用户表中所有数据
SELECT * FROM users;

条件查询:

-- 查询年龄大于 30 岁的用户
SELECT * FROM users WHERE age > 30;

聚合查询:

-- 统计不同职业的用户数量
SELECT occupation, COUNT(*) AS user_count FROM users GROUP BY occupation;

通过以上示例代码,可以初步了解如何在 Hive 中创建数据仓库的表、插入数据,并进行常见的数据查询操作。在实际应用中,可以根据具体需求和数据情况编写更复杂的查询语句,实现更多样化的数据分析功能。

更多内容,请关注「同道说」

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/516554.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

我认识的Git-史上最强的版本控制系统

大家好! 欢迎大家来一起交流Git使用心得,相信很多同事对Git都很熟悉了,如果下面说的有错误的“知识点”,欢迎批评指正。 初识Git 我认识Git已经很多年了(我在有道云笔记里面“Git”文件夹的创建时间是: …

sky06笔记下

1.边沿检测 检测输入信号din的上升沿&#xff0c;并输出pulse module edge_check ( clk, rstn, din, pulse ); input wire clk,rstn; input wire din; output reg pulse;wire din_dly;always (posedge clk or negedge rstn)beginif(!rstn)din_dly < 1b0;elsedin_dly < d…

JS-11A/11时间继电器 板前接线 JOSEF约瑟

系列型号&#xff1a; JS-11A/11集成电路时间继电器&#xff1b;JS-11A/12集成电路时间继电器&#xff1b; JS-11A/13集成电路时间继电器&#xff1b;JS-11A/136集成电路时间继电器&#xff1b; JS-11A/137集成电路时间继电器&#xff1b;JS-11A/22集成电路时间继电器&#…

【C语言】_文件内容操作:随机读写

目录 1. fseek 1.1 随机读文件 1.2 随机写文件 2. ftell 3. rewind 当以读方式打开一个存在且存有内容的文件时&#xff0c;文件指针会默认指向第一个元素。以在test4.txt文件中存储abcdef为例&#xff1a; int main() {//打开文件FILE* pf fopen("E:\\C_文件操作…

数学知识--(质数,约数)

本文用于个人算法竞赛学习&#xff0c;仅供参考 目录 一.质数的判定 二.分解质因数 三.质数筛 1.朴素筛法 2.埃氏筛法 3.线性筛法 四.约数 1.求一个数的所有约数 2.约数个数和约数之和 3.欧几里得算法&#xff08;辗转相除法&#xff09;-- 求最大公约数 一.质数的判定 …

JWT--study

JWT 1、简介 2、结构 头部 载荷 签证 应用 <dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version> </dependency>Token 生成 解析token package com.wang.utils;import io.…

【QT+QGIS跨平台编译】056:【pdal_lepcc+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

点击查看专栏目录 文章目录 一、pdal_lepcc介绍二、pdal下载三、文件分析四、pro文件五、编译实践一、pdal_lepcc介绍 pdal_lepcc 是 PDAL(Point Data Abstraction Library)的一个插件,用于点云数据的压缩。它基于 EPCC(Entwine Point Cloud Compression)算法,提供了对点…

Linux-4 gcc和makefile

Linux编译器-gcc/g使用 1.设计样例 c语言&#xff1a;linux中用的stdc99版本--可能会出现其他问题 c&#xff1a;Linux中用的stdc11--使用c11版本 Linux没有文件格式的区分&#xff0c;但是编译器区分 gcc编译器的文件格式是filename.c g编译器的文件格式是filename.cc或者fil…

利用Spark将Kafka数据流写入HDFS

利用Spark将Kafka数据流写入HDFS 在当今的大数据时代&#xff0c;实时数据处理和分析变得越来越重要。Apache Kafka作为一个分布式流处理平台&#xff0c;已经成为处理实时数据的事实标准。而Apache Spark则是一个强大的大数据处理框架&#xff0c;它提供了对数据进行复杂处理…

可行性研究报告模板(套用)

1业务需求可行性分析 2技术可行性分析 2.1规范化原则 2.2高度的兼容性和可移植性 2.3人性化、适用性 2.4标准化统一设计原则 2.5先进安全可扩展性原则 3开发周期可行性分析 4人力资源可行性分析 5成本分析 6收益分析 7结论 所有资料获取进主页或本文末个人名片直接…

【OSTEP】并发:线程与多线程

" A flow of control within a process that consists of a PC, a register set and a stack space" 本章将介绍为单个运行进程提供的新抽象 —— 线程 (thread) 线程是 调度的一个基本单位&#xff08;basic unit of CPU scheduling&#xff09;一个单独的线程至…

RUST语言函数的定义与调用

1.定义函数 定义一个RUST函数使用fn关键字 函数定义语法: fn 函数名(参数名:参数类型,参数名:参数类型) -> 返回类型 { //函数体 } 定义一个没有参数,没有返回类型的参数 fn add() {println!("调用了add函数!"); } 定义有一个参数的函数 fn add(a:u32)…

力扣热题100_链表_21_合并两个有序链表

文章目录 题目链接解题思路解题代码 题目链接 21. 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4] 示例…

InternLM2-lesson2作业

书生浦语大模型趣味 Demo 视频连接&#xff1a;https://www.bilibili.com/video/BV1AH4y1H78d/?vd_source902e3124d4683c41b103f1d1322401fa 目录 书生浦语大模型趣味 Demo一、基础作业二、进阶作业 一、基础作业 第一次执行&#xff1a; 第二次执行&#xff1a; 第一次执…

uni-app 实现仿微信界面【我的+首页聊天列表+长按菜单功能+添加菜单功能】+ 附源码

目录 【微信首页聊天列表】界面 【我的】界面 源代码&#xff1a; 文后附完整代码&#xff0c;支持一键导入 HBuilderX 示例体验 【微信首页聊天列表】界面 仿造【微信首页聊天列表 长按菜单功能 右上角添加按钮弹窗功能】&#xff0c;使用 uni-app 开发&#xff0c; 一…

蓝桥杯真题:路径

import java.util.Scanner; // 1:无需package // 2: 类名必须Main, 不可修改public class Main {public static void main(String[] args) {int n 2022; //从下标为1开始&#xff0c;方便计算int[] q new int[n]; //存储最短路q[1] 0; //起始条件for (int i 2; i < 202…

黑马java-JavaWeb-Maven

1.Maven是专门用于管理和构建java项目的工具&#xff0c;它的主要功能有&#xff1a; 提供了一套标准化的项目结构提供了一套标准化的构建流程提供了一套依赖管理机制&#xff08;管理项目所依赖的第三方资源&#xff09; 2.Maven仓库 本地仓库&#xff1a;自己计算机上的一个目…

docker环境中宿主机防火墙添加ssh无法生效的问题分析

背景 在部署了docker容器的环境中&#xff0c;要在防火墙开通22端口&#xff0c;即ssh服务&#xff0c;以便在终端可以正常登陆。使用firewall-cmd在docker区域添加了22端口&#xff0c;但是没有起作用。后再public区域添加22端口才起作用。为什么docker区域不起作用&#xff…

单位档案室用综合档案管理系统还是馆藏档案管理系统

单位档案室应该使用综合档案管理系统。 综合档案管理系统是一种全面管理各类档案的系统&#xff0c;可以对文书档案、电子档案、纸质档案等进行统一管理和检索。综合档案管理系统可以满足单位档案室的多种需求&#xff0c;包括文书档案的归档、借阅、追溯等功能&#xff0c;同时…

进阶线段树之乘法线段树

1.乘法线段树 顾名思义&#xff0c;就是其中的区间修改为乘法&#xff0c;但是呢&#xff0c;如果只是一个乘法&#xff0c;把之前的加号变成*号&#xff0c;然后开long long即可&#xff08;因为乘法的数据超大&#xff0c;如果不在中间mod点儿东西还能直接超出64位&#xff…