机器学习深度学习——多层感知机

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——感知机
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

上一节已经简单讲解了感知机,并且用XOR函数来举例说明单层感知机的不足,在这里进行多层感知机的讲解。

多层感知机

  • 解决XOR
  • 隐藏层
    • 线性模型可能会出错
    • 在网络中加入隐藏层
    • 从线性到非线性
    • 通用近似定理
  • 激活函数
    • ReLU函数
    • sigmoid函数
    • tanh函数
  • 多类分类

解决XOR

在这里插入图片描述
如上图所示,分别利用黄线和蓝线来对输入特征进行分别,并用表格来进行表示:
在这里插入图片描述
这个表格就直接很容易的体现出了输入和输出的关系,很明显这不是单层感知机能够完成的,而是需要进行如下的过程:
在这里插入图片描述
显然,我们要从白圈得到输入的值,从而得知黄圈和蓝圈分别是什么符号再得到灰色的输出值。
简单来讲,这就是一个单隐藏层,也就是说输入和输出之间隐藏了一层运算,单隐藏图如下图:
在这里插入图片描述
其中,隐藏层的大小是超参数。隐藏层的相关内容将在后面详细介绍。

隐藏层

对于之前的线性回归模型,标签通过仿射变换以后,确实与我们的输入数据直接相关了,所以无需隐藏层。但是,仿射变换中的线性其实是一种太过于强的假设了。

线性模型可能会出错

线性模型意味着单调:任何特征的增大都会导致模型输出的增大或缩小(取决于对应的权重符号)。
然而我们能找出很多违反单调性的例子。例如,我们想要根据体温预测死亡率。对体温高于37摄氏度的人来说,温度越高风险越大。然而,对体温低于37摄氏度的人来说,温度越高风险就越低。
再比如,上一节中我们对猫狗图像进行分类,如果用线性模型,区分猫和狗的唯一要求变为了评估单个像素的强度。在一个倒置图像后依然保留类别的世界里,注定失败。
这是因为,任何像素的重要性都以复杂的方式取决于该像素的上下文(周围像素的值)。由于这会考虑到特征之间的相关交互作用,所以我们引入了隐藏层。

在网络中加入隐藏层

我们可以在网络中加入一个或多个隐藏层来克服线性模型的限制,使其可以处理更普遍的函数关系类型。要做到这一点,最简单的方法是将许多全连接层都堆叠到一起,每一层都输出到上面的层,直到生成最后的输出。
我们可以把前L-1层都看作是表示,把最后一层看作是线性预测器。这种架构就叫做多层感知机,缩写为MLP
在这里插入图片描述
如该图为一个单隐藏层的多层感知机,具有5个隐藏单元。输入层不涉及任何计算,因此使用此网络产生输出只需要实现隐藏层和输出层的计算。
因此,该MLP的层数为2,。注意,这两个层都是全连接的,每个输入都会影响隐藏层的每个神经元,而隐藏层中的每个神经元又会影响输出层中的每个神经元。

从线性到非线性

我们通过矩阵X表示n个样本的小批量,其中每个样本都具有d个输入特征。对于具有h个隐藏单元的单隐藏层多层感知机,用H表示隐藏层的输出,称为隐藏表示。我们用如下方式计算单隐藏层多层感知机的输出O:
H = X W ( 1 ) + b ( 1 ) O = H W ( 2 ) + b ( 2 ) H=XW^{(1)}+b^{(1)}\\ O=HW^{(2)}+b^{(2)} H=XW(1)+b(1)O=HW(2)+b(2)
其实,如果只是上面的式子,并没有改变线性模型的情况。我们试着合并一下单隐藏层,可得:
O = ( X W ( 1 ) + b ( 1 ) ) W ( 2 ) + b ( 2 ) = X W ( 1 ) W ( 2 ) + b ( 1 ) W ( 2 ) + b ( 2 ) O=(XW^{(1)}+b^{(1)})W^{(2)}+b^{(2)}=XW^{(1)}W^{(2)}+b^{(1)}W^{(2)}+b^{(2)} O=(XW(1)+b(1))W(2)+b(2)=XW(1)W(2)+b(1)W(2)+b(2)
上式其实也只有X是未知的,那么上式其实就可以等价于O=XW+b了。
因此,为了发挥出多层架构的潜力,我们需要引入激活函数σ。激活函数的输出称为活性值。一般来说,只要有了激活函数,就不可能再将我们的多层感知机退化成线性模型:
H = σ ( X W ( 1 ) + b ( 1 ) ) , O = H W ( 2 ) + b ( 2 ) H=\sigma(XW^{(1)}+b^{(1)}),\\ O=HW^{(2)}+b^{(2)} H=σ(XW(1)+b(1)),O=HW(2)+b(2)

通用近似定理

多层感知机可以通过隐藏神经元,捕捉到输入之间复杂的相互作用,这些神经元依赖于每个输入的值。
我们可以很容易地设计隐藏结点从而执行任意计算。例如在一对输入上进行基本逻辑操作,多层感知机是通用近似器。即使是网络只有一个隐藏层,给足足够的神经元和正确的权重,我们可以对任意函数建模。
虽然一个单隐藏层可以学习任何函数,但是不代表通过一个单隐藏层就可以解决所有问题,事实上通过更深的网络,可以更容易的逼近许多函数。

激活函数

前面已经讲过了激活函数的必要性,它是线性模型转换为非线性模型的关键。激活函数通过计算加权和并加上偏置来确定神经元是否应该被激活,它们将输入信号转换为输出的可微运算。大多数激活函数都是非线性的。

import torch
from d2l import torch as d2l

ReLU函数

实现简单且最受欢迎的激活函数,就是修正线性单元(ReLU),它提供了一种非常简单的非线性变化:
R e L U ( x ) = m a x ( x , 0 ) ReLU(x)=max(x,0) ReLU(x)=max(x,0)
通俗的说,ReLU函数将对应的活性值设为0,仅保留正元素并丢弃所有负元素。我们可以画出函数的曲线图:

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))
d2l.plt.show()

在这里插入图片描述
我们可以绘制ReLU函数的导数:

y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
d2l.plt.show()

在这里插入图片描述
选用ReLU的原因:它求导表现的很好,要么让参数消失,要么让参数通过。这使得优化表现得更好,并且ReLU减轻了困扰以往神经网络的梯度消失问题。
而ReLU也有很多变体,如参数化ReLU函数,其添加了一个线性项,因此即使参数是负的,某些信息仍然可以通过:
p R e L U ( x ) = m a x ( 0 , x ) + α m i n ( 0 , x ) pReLU(x)=max(0,x)+αmin(0,x) pReLU(x)=max(0,x)+αmin(0,x)

sigmoid函数

sigmoid函数将输入变换为区间(0,1)上输出,因此通常称为挤压函数
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x)=\frac{1}{1+e^{-x}} sigmoid(x)=1+ex1
在这里插入图片描述

tanh函数

和sigmoid类型,双曲正切函数也是压缩区间,压缩到了(-1,1):
t a n h ( x ) = 1 − e − 2 x 1 + e − 2 x tanh(x)=\frac{1-e^{-2x}}{1+e^{-2x}} tanh(x)=1+e2x1e2x

多类分类

其实就是之前的softmax函数加了个隐藏层:
输入 x ∈ R n 隐藏层 W 1 ∈ R m × n , b 1 ∈ R m 输出层 W 2 ∈ R m × k , b 2 ∈ R k 输入x∈R^n\\ 隐藏层W_1∈R^{m×n},b_1∈R^m\\ 输出层W_2∈R^{m×k},b_2∈R^k\\ 输入xRn隐藏层W1Rm×n,b1Rm输出层W2Rm×k,b2Rk
那么可以得到:
h = σ ( W 1 x + b 1 ) o = W 2 T h + b 2 y = s o f t m a x ( o ) h=\sigma(W_1x+b_1)\\ o=W_2^Th+b_2\\ y=softmax(o) h=σ(W1x+b1)o=W2Th+b2y=softmax(o)
注意这里的o的表达式和之前写的不一样,上面只是给出个大概,而真正要进行运算的时候要满足矩阵乘法的原则:前面的列数等于后面的行数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/51477.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VR全景在酒店的发展状况如何?酒店该如何做营销?

现阶段,VR全景技术已经被酒店、民宿、旅游景区、房产楼盘、校园等行业所应用,每天都有不少人通过VR全景展示来了解酒店的设施环境,而酒店也可以借此机会,详细展示自身优势,更大范围吸引顾客。 VR酒店拥有真实、立体的全…

互斥量 的初识

Q: 什么是互斥量? A: 在多数情况下,互斥型信号量和二值型信号量非常相似,但是从功能上二值型信号量用于同步, 而互斥型信号量用于资源保护。 互斥型信号量和二值型信号量还有一个最大的区别,互斥型信号量可以有效解决…

分布式理论:CAP理论 BASE理论

文章目录 1. CAP定理1.1 一致性1.2 可用性1.3 分区容错1.4 矛盾 2. BASE理论3. 解决分布式事务的思路4. 扩展 解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。 1. CAP定理 Consistency(一致性): 用户访问分布式系统中的任意节点,得到的…

Sentinel dashboard的使用;Nacos保存Sentinel限流规则

Sentinel dashboard的使用 往期文章 Nacos环境搭建Nacos注册中心的使用Nacos配置中心的使用Sentinel 容灾中心的使用 参考文档 Sentinel alibaba/spring-cloud-alibaba Wiki GitHub 限流结果 下载sentinel-dashboard github地址:Sentinel/sentinel-dashboar…

SpringBoot的三层架构以及IOCDI

目录 一、IOC&DI入门 二、三层架构 数据库访问层 业务逻辑层 控制层 一、IOC&DI入门 在软件开发中,IOC(Inversion of Control)和DI(Dependency Injection)是密切相关的概念。 IOC(控制反转&a…

【腾讯云 Cloud Studio 实战训练营】全新的开发方式,让你实现一站式开发

一、前言 关于 Cloud Studio 全在线云端开发 用户只需要浏览器就可以访问和使用Cloud Studio,无需在本地配置开发环境。Cloud Studio将开发环境部署在云服务器上,用户可以随时随地进行开发。多语言支持 Cloud Studio支持常见的开发语言,如Node.js、Python、Java、PHP等。用户…

Arcgis画等高线

目录 数据准备绘制等高线3D等高线今天我们将学习如何在ArcGIS中绘制等高线地图。等高线地图是地理信息系统中常见的数据表现形式,它通过等高线将地形起伏展现得一目了然,不仅美观,还能提供重要的地形信息。 数据准备 在开始之前,确保已经准备好了高程数据,它通常以栅格数…

11、PHP面向对象1

1、PHP的面向对象与其他语言类似,但也有不同。 PHP访问成员变量时,需要用“->”,而不能用“.”,访问成员函数时,需要用“->”,而不能用“.”。操作符“::”可以在没有任何声明实例的情况下访问类中的…

使用LangChain构建问答聊天机器人案例实战(二)

使用LangChain构建问答聊天机器人案例实战 逐行解读和验证全生命周期Prompting 现在我们使用GPT-4作为语言模型的驱动力,这个模型将成为整个应用程序的引擎,驱动整个应用程序运行,同时,应用程序也是基于Cpython去实现的,如图14-8所示,Pyodide是CPython到WebAssembly/Emsc…

jmeter实现webservice接口测试

其实可以用jmeter两种sampler进行webservice的测试: 1、SOAP/XML-RPC Request(但是在jmeter3.2以后版本中已经取消了这个取样器) 2、HTTP请求 下面分别介绍两种方式 一、首先需要使用soupUI工具抓取webservice接口的部分需要的信息。 1、新建项目 2、新建成功的…

htmlCSS-----定位

目录 前言 定位 分类和取值 定位的取值 1.相对定位 2.绝对位置 元素居中操作 3.固定定位 前言 今天我们来学习html&CSS中的元素的定位,通过元素的定位我们可以去更好的将盒子放到我们想要的位置,下面就一起来看看吧! 定位 定位posi…

pytorch(续周报(1))

文章目录 2.1 张量2.1.1 简介2.1.2 创建tensor2.1.3 张量的操作2.1.4 广播机制 2.2 自动求导Autograd简介2.2.1 梯度 2.3 并行计算简介2.3.1 为什么要做并行计算2.3.2 为什么需要CUDA2.3.3 常见的并行的方法:网络结构分布到不同的设备中(Network partitioning)同一层…

【Linux多线程】详解线程控制、线程分离

线程互斥与同步 👸 理解线程🤴pthead_t🥷关于线程🦸‍♀️线程控制POSIX线程库线程ID及进程地址空间布局 🦸线程分离__thread关键字🦸‍♂️pthread_detach函数🦹‍♀️pthread_exit函数&#x…

RNN架构解析——传统RNN模型

目录 传统RNN的内部结构图使用RNN优点和缺点 传统RNN的内部结构图 使用RNN rnnnn.RNN(5,6,1) #第一个参数是输入张量x的维度,第二个是隐藏层维度,第三层是隐藏层的层数 input1torch.randn(1,3,5) #第一个是输入序列的长度,第二个是批次的样本…

网络层IP协议的基本原理 数据链路层ARP协议 域名解析以及一些重要技术

目录 1 网络层IP协议协议头格式网段划分DHCPCIDR:基于子网掩码的划分方式特殊的IP号IP地址的数量限制私有IP地址和公网IP地址路由路由表 2 数据链路层 — 局域网的转发问题以太网认识以太网以太网帧格式局域网通信原理 MTUMTU对IP协议的影响MTU对UDP协议的影响MTU对…

自动化测试——APP测试

一、环境配置 1、安装jdk 配置环境变量 2、Android SDK 环境安装 3、Appium Server安装 4、模拟器安装 5、安装appium-python-client Python第三方库 二、APP自动化测试原理 三、Desired Capabilites——APPium自动化配置项 1、设置参数 2、操作系统 3、选择版本 4、设备名称…

CAN转EtherNet/IP网关can协议破解服务

JM-EIP-CAN 是自主研发的一款 ETHERNET/IP 从站功能的通讯网关。该产品主要功能是将各种 CAN 总线和 ETHERNET/IP 网络连接起来。 本网关连接到 ETHERNET/IP 总线中做为从站使用,连接到 CAN 总线中根据节点号进行读写。 技术参数 ETHERNET/IP 技术参数 网关做为 …

选择器jQuery

诚信是你价格不菲的鞋子,踏遍千山万水,质量也应永恒不变。 jQuery选择器大全总结: jQuery选择器是一种用于在HTML文档中选择元素的强大工具。下面是一些常用的jQuery选择器的总结: 基本选择器: 元素选择器&#xff1a…

HarmonyOS/OpenHarmony元服务开发-卡片使用动效能力

ArkTS卡片开放了使用动画效果的能力,支持显式动画、属性动画、组件内转场能力。需要注意的是,ArkTS卡片使用动画效果时具有以下限制: 以下示例代码实现了按钮旋转的动画效果: Entry Component struct AttrAnimationExample { St…

生命在于学习——APP渗透学习笔记

一、app渗透篇 1、Android 简介 自从 Android 被谷歌收购(2005 年),谷歌已经完成了整个开发,在过去的 9 年里,尤其是在安全方面,有很多变化。 现在,它是世界上最广泛使用的智能手机平台&#…