AtCoder Beginner Contest 347 (ABCDEF题)视频讲解

A - Divisible

Problem Statement

You are given positive integers N N N and K K K, and a sequence of length N N N, A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN).
Extract all elements of A A A that are multiples of K K K, divide them by K K K, and print the quotients.

Constraints

1 ≤ N , K ≤ 100 1\leq N,K\leq 100 1N,K100
KaTeX parse error: Expected 'EOF', got '&' at position 11: 1\leq A_1 &̲lt; A_2 < \l…
A A A has at least one multiple of K K K.
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N K K K
A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Output

Divide all elements of A A A that are multiples of K K K and print the quotients in ascending order with spaces in between.

Sample Input 1
5 2
2 5 6 7 10
Sample Output 1
1 3 5

The multiples of 2 2 2 among the elements in A A A are 2 2 2, 6 6 6, and 10 10 10. Divide them by 2 2 2 to get 1 1 1, 3 3 3, and 5 5 5, and print them in ascending order with spaces in between.

Sample Input 2
3 1
3 4 7
Sample Output 2
3 4 7
Sample Input 3
5 10
50 51 54 60 65
Sample Output 3
5 6

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int n, k;
	cin >> n >> k;

	std::vector<int> a(n);
	for (int i = 0; i < n; i ++) {
		cin >> a[i];
		if (a[i] % k == 0)
			cout << a[i] / k << " ";
	}

	return 0;
}

B - Substring

Problem Statement

You are given a string S S S consisting of lowercase English letters. How many different non-empty substrings does S S S have?
A substring is a contiguous subsequence. For example, xxx is a substring of yxxxy but not of xxyxx.

Constraints

S S S is a string of length between 1 1 1 and 100 100 100, inclusive, consisting of lowercase English letters.

Input

The input is given from Standard Input in the following format:

S S S

Output

Print the answer.

Sample Input 1
yay
Sample Output 1
5

S S S has the following five different non-empty substrings:
a
y
ay
ya
yay

Sample Input 2
aababc
Sample Output 2
17
Sample Input 3
abracadabra
Sample Output 3
54

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	string s;

	cin >> s;

	int n = s.size();
	set<string> res;
	for (int i = 0; i < n; i ++)
		for (int j = 1; j <= n - i; j ++)
			res.insert(s.substr(i, j));

	cout << res.size() << endl;

	return 0;
}

C - Ideal Holidays

Problem Statement

In the Kingdom of AtCoder, a week consists of A + B A+B A+B days, with the first through A A A-th days being holidays and the ( A + 1 ) (A+1) (A+1)-th through ( A + B ) (A+B) (A+B)-th being weekdays.
Takahashi has N N N plans, and the i i i-th plan is scheduled D i D_i Di days later.
He has forgotten what day of the week it is today. Determine if it is possible for all of his N N N plans to be scheduled on holidays.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1\leq N\leq 2\times 10^5 1N2×105
1 ≤ A , B ≤ 1 0 9 1\leq A,B\leq 10^9 1A,B109
KaTeX parse error: Expected 'EOF', got '&' at position 10: 1\leq D_1&̲lt;D_2&lt;\ldot…

Input

The input is given from Standard Input in the following format:

N N N A A A B B B
D 1 D_1 D1 D 2 D_2 D2 … \ldots D N D_N DN

Output

Print Yes in a single line if it is possible for all of Takahashi’s N N N plans to be scheduled on holidays, and No otherwise.

Sample Input 1
3 2 5
1 2 9
Sample Output 1
Yes

In this input, a week consists of seven days, with the first through second days being holidays and the third through seventh days being weekdays.
Let us assume today is the seventh day of the week. In this case, one day later would be the first day of the week, two days later would be the second day of the week, and nine days later would also be the second day of the week, making all plans scheduled on holidays. Therefore, it is possible for all of Takahashi’s N N N plans to be scheduled on holidays.

Sample Input 2
2 5 10
10 15
Sample Output 2
No
Sample Input 3
4 347 347
347 700 705 710
Sample Output 3
Yes

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, a, b;
int d[N];

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> a >> b;

	int l1 = -1e18, r1 = 1e18, l2 = -1e18, r2 = 1e18;
	for (int i = 1; i <= n; i ++) {
		cin >> d[i];
		d[i] %= (a + b);
		int tl = (0 - d[i] + a + b) % (a + b), tr = (a - 1 - d[i] + a + b) % (a + b);
		if (tl > tr) {
			l1 = max(0ll, l1), r1 = min(r1, tr);
			l2 = max(l2, tl), r2 = min(a + b - 1, r2);
		} else
			l1 = max(l1, tl), r1 = min(r1, tr), l2 = max(l2, tl), r2 = min(r2, tr);
	}

	if (l1 <= r1 || l2 <= r2) cout << "Yes" << endl;
	else cout << "No" << endl;

	return 0;
}

D - Popcount and XOR

Problem Statement

You are given non-negative integers a a a, b b b, and C C C.
Determine if there is a pair of non-negative integers ( X , Y ) (X, Y) (X,Y) that satisfies all of the following five conditions. If such a pair exists, print one.
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq X &̲lt; 2^{60}
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq Y &̲lt; 2^{60}
popcount ⁡ ( X ) = a \operatorname{popcount}(X) = a popcount(X)=a
popcount ⁡ ( Y ) = b \operatorname{popcount}(Y) = b popcount(Y)=b
X ⊕ Y = C X \oplus Y = C XY=C
Here, ⊕ \oplus denotes the bitwise XOR.
If multiple pairs ( X , Y ) (X, Y) (X,Y) satisfy the conditions, you may print any of them.

What is popcount? For a non-negative integer $x$, the popcount of $x$ is the number of $1$s in the binary representation of $x$. More precisely, for a non-negative integer $x$ such that $\displaystyle x=\sum _ {i=0} ^ \infty b _ i2 ^ i\ (b _ i\in\lbrace0,1\rbrace)$, we have $\displaystyle\operatorname{popcount}(x)=\sum _ {i=0} ^ \infty b _ i$. For example, $13$ in binary is 1101, so $\operatorname{popcount}(13)=3$. What is bitwise XOR? For non-negative integers $x, y$, the bitwise exclusive OR $x \oplus y$ is defined as follows. The $2^k$'s place $\ (k\geq0)$ in the binary representation of $x \oplus y$ is $1$ if exactly one of the $2^k$'s places $\ (k\geq0)$ in the binary representations of $x$ and $y$ is $1$, and $0$ otherwise. For example, $9$ and $3$ in binary are 1001 and 0011, respectively, so $9 \oplus 3 = 10$ (in binary, 1010). #### Constraints

0 ≤ a ≤ 60 0 \leq a \leq 60 0a60
0 ≤ b ≤ 60 0 \leq b \leq 60 0b60
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq C &̲lt; 2^{60}
All input values are integers.

Input

The input is given from Standard Input in the following format:

a a a b b b C C C

Output

If there is a pair of non-negative integers that satisfies the conditions, choose one such pair ( X , Y ) (X, Y) (X,Y) and print X X X and Y Y Y in this order, with a space in between.
If no such pair exists, print -1.

Sample Input 1
3 4 7
Sample Output 1
28 27

The pair ( X , Y ) = ( 28 , 27 ) (X, Y) = (28, 27) (X,Y)=(28,27) satisfies the conditions.
Here, X X X and Y Y Y in binary are 11100 and 11011, respectively.
X X X in binary is 11100, so popcount ⁡ ( X ) = 3 \operatorname{popcount}(X) = 3 popcount(X)=3.
Y Y Y in binary is 11011, so popcount ⁡ ( Y ) = 4 \operatorname{popcount}(Y) = 4 popcount(Y)=4.
X ⊕ Y X \oplus Y XY in binary is 00111, so X ⊕ Y = 7 X \oplus Y = 7 XY=7.
If multiple pairs of non-negative integers satisfy the conditions, you may print any of them, so printing 42 45, for example, would also be accepted.

Sample Input 2
34 56 998244353
Sample Output 2
-1

No pair of non-negative integers satisfies the conditions.

Sample Input 3
39 47 530423800524412070
Sample Output 3
540431255696862041 10008854347644927

Note that the values to be printed may not fit in 32 32 32-bit integers.

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int a, b, c;

	cin >> a >> b >> c;

	int r1 = 0, r2 = 0;
	for (int i = 0; i < 61; i ++)
		if (c >> i & 1) {
			if (a > b) r1 += (1ll << i), a --;
			else r2 += (1ll << i), b --;
		}
	if (a != b || a < 0 || b < 0) {
		cout << -1 << endl;
		return 0;
	}
	for (int i = 0; i < 61; i ++)
		if (!(c >> i & 1) && a && b)
			r1 += (1ll << i), r2 += (1ll << i), a --, b --;

	if (a || b) {
		cout << -1 << endl;
		return 0;
	}
	cout << r1 << " " << r2 << endl;

	return 0;
}

E - Set Add Query

Problem Statement

There is an integer sequence A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN) of length N N N, where all elements are initially set to 0 0 0. Also, there is a set S S S, which is initially empty.
Perform the following Q Q Q queries in order. Find the value of each element in the sequence A A A after processing all Q Q Q queries. The i i i-th query is in the following format:
An integer x i x_i xi is given. If the integer x i x_i xi is contained in S S S, remove x i x_i xi from S S S. Otherwise, insert x i x_i xi to S S S. Then, for each j = 1 , 2 , … , N j=1,2,\ldots,N j=1,2,,N, add ∣ S ∣ |S| S to A j A_j Aj if j ∈ S j\in S jS.
Here, ∣ S ∣ |S| S denotes the number of elements in the set S S S. For example, if S = { 3 , 4 , 7 } S=\lbrace 3,4,7\rbrace S={3,4,7}, then ∣ S ∣ = 3 |S|=3 S=3.

Constraints

1 ≤ N , Q ≤ 2 × 1 0 5 1\leq N,Q\leq 2\times10^5 1N,Q2×105
1 ≤ x i ≤ N 1\leq x_i\leq N 1xiN
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N Q Q Q
x 1 x_1 x1 x 2 x_2 x2 … \ldots x Q x_Q xQ

Output

Print the sequence A A A after processing all queries in the following format:

A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Sample Input 1
3 4
1 3 3 2
Sample Output 1
6 2 2

In the first query, 1 1 1 is inserted to S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 1 , 0 , 0 ) A=(1,0,0) A=(1,0,0).
In the second query, 3 3 3 is inserted to S S S, making S = { 1 , 3 } S=\lbrace 1,3\rbrace S={1,3}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 3 A_3 A3. The sequence becomes A = ( 3 , 0 , 2 ) A=(3,0,2) A=(3,0,2).
In the third query, 3 3 3 is removed from S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 4 , 0 , 2 ) A=(4,0,2) A=(4,0,2).
In the fourth query, 2 2 2 is inserted to S S S, making S = { 1 , 2 } S=\lbrace 1,2\rbrace S={1,2}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 2 A_2 A2. The sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).
Eventually, the sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).

Sample Input 2
4 6
1 2 3 2 4 2
Sample Output 2
15 9 12 7

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, q;
int a[N], s[N], res[N], id[N];
int cnt[N], lst[N];

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> q;

	int idx = 0;
	for (int i = 1; i <= q; i ++) {
		cin >> a[i];
		if (!id[a[i]]) id[a[i]] = ++ idx;
	}

	set<int> S;
	int r = 0;
	for (int i = 1; i <= q; i ++) {
		cnt[a[i]] ++;
		if (S.count(a[i])) S.erase(a[i]);
		else S.insert(a[i]);
		s[i] = s[i - 1] + S.size();
		r = max(id[a[i]], r);
		if (S.size()) res[1] += S.size(), res[r + 1] -= S.size();
	}
	for (int i = 1; i <= n; i ++)
		res[i] += res[i - 1], lst[i] = q;
	for (int i = q; i >= 1; i --) {
		if (cnt[a[i]] % 2 == 0) {
			res[id[a[i]]] -= (s[lst[a[i]]] - s[i - 1]);
		} else {
			lst[a[i]] = i - 1;
		}
		cnt[a[i]] --;
	}

	for (int i = 1; i <= n; i ++)
		cout << res[id[i]] << " ";

	return 0;
}

F - Non-overlapping Squares

Problem Statement

There is an N × N N\times N N×N grid, and the cell at the i i i-th row from the top and the j j j-th column from the left ( 1 ≤ i , j ≤ N ) (1\leq i,j\leq N) (1i,jN) contains the integer A i , j A _ {i,j} Ai,j.
You are given an integer M M M. When choosing three non-overlapping M × M M\times M M×M grids, find the maximum possible sum of the integers written in the chosen grids.

Formal definition of the problem A $6$-tuple of integers $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$ is called a good $6$-tuple when it satisfies the following three conditions: $1\leq i _ k\leq N-M+1\ (k=1,2,3)$ $1\leq j _ k\leq N-M+1\ (k=1,2,3)$ If $k\neq l\ (k,l\in\lbrace1,2,3\rbrace)$, the sets $\lbrace(i,j)\mid i _ k\leq i\lt i _ k+M\wedge j _ k\leq j\lt j _ k+M\rbrace$ and $\lbrace(i,j)\mid i _ l\leq i\lt i _ l+M\wedge j _ l\leq j\lt j _ l+M\rbrace$ do not intersect. Find the maximum value of $\displaystyle \sum _ {k=1} ^ 3\sum _ {i=i _ k} ^ {i _ k+M-1}\sum _ {j=j _ k} ^ {j _ k+M-1}A _ {i,j}$ for a good $6$-tuple $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$. It can be shown that a good $6$-tuple exists under the constraints of this problem. #### Constraints

2 ≤ N ≤ 1000 2\leq N\leq 1000 2N1000
1 ≤ M ≤ N / 2 1\leq M\leq N/2 1MN/2
0 ≤ A i , j ≤ 1 0 9 0\leq A _ {i,j}\leq10 ^ 9 0Ai,j109
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 1 , 1 A _ {1,1} A1,1 A 1 , 2 A _ {1,2} A1,2 … \ldots A 1 , N A _ {1,N} A1,N
A 2 , 1 A _ {2,1} A2,1 A 2 , 2 A _ {2,2} A2,2 … \ldots A 2 , N A _ {2,N} A2,N
⋮ \vdots   ⋮ \ \vdots   ⋱ \ddots ⋮ \vdots
A N , 1 A _ {N,1} AN,1 A N , 2 A _ {N,2} AN,2 … \ldots A N , N A _ {N,N} AN,N

Output

Print the answer.

Sample Input 1
7 3
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 1
154

From the given grid, if we choose three 3 × 3 3\times3 3×3 grids as shown in the figure below (this corresponds to setting ( i 1 , j 1 , i 2 , j 2 , i 3 , j 3 ) = ( 1 , 5 , 2 , 1 , 5 , 2 ) (i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)=(1,5,2,1,5,2) (i1,j1,i2,j2,i3,j3)=(1,5,2,1,5,2)), the sum of the numbers written in the chosen grids will be 154 154 154.

There is no way to make the sum 155 155 155 or greater while satisfying the conditions in the problem statement, so print 154 154 154.

Sample Input 2
7 1
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 2
27

The following choice is optimal.

Sample Input 3
16 4
74 16 58 32 97 52 43 51 40 58 13 24 65 11 63 29
98 75 40 77 15 50 83 85 35 46 38 37 56 38 63 55
95 42 10 70 53 40 25 10 70 32 33 19 52 79 74 58
33 91 53 11 65 63 78 77 81 46 81 63 11 82 55 62
39 95 92 69 77 89 14 84 53 78 71 81 66 39 96 29
74 26 60 55 89 35 32 64 17 26 74 92 84 33 59 82
23 69 10 95 94 14 58 58 97 95 62 58 72 55 71 43
93 77 27 87 74 72 91 37 53 80 51 71 37 35 97 46
81 88 26 79 78 30 53 68 83 28 59 28 74 55 20 86
93 13 25 19 53 53 17 24 69 14 67 81 10 19 69 90
88 83 62 92 22 31 27 34 67 48 42 32 68 14 96 87
44 69 25 48 68 42 53 82 44 42 96 31 13 56 68 83
63 87 24 75 16 70 63 99 95 10 63 26 56 12 77 49
94 83 69 95 48 41 40 97 45 61 26 38 83 91 44 31
43 69 54 64 20 60 17 15 62 25 58 50 59 63 88 70
72 95 21 28 41 14 77 22 64 78 33 55 67 51 78 40
Sample Output 3
3295

The following choice is optimal.

Solution

后期补一下这题目的视频


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 1e3 + 10;

int n, m;
int a[N][N], s[N][N], ln[N], cl[N];
int lu[N][N], ld[N][N], ru[N][N], rd[N][N];

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> m;

	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= n; j ++)
			cin >> a[i][j], a[i][j] += a[i][j - 1] + a[i - 1][j] - a[i - 1][j - 1];
	for (int i = 1; i <= n - m + 1; i ++)
		for (int j = 1; j <= n - m + 1; j ++) {
			s[i][j] = a[i + m - 1][j + m - 1] - a[i - 1][j + m - 1] - a[i + m - 1][j - 1] + a[i - 1][j - 1];
			ln[i] = max(ln[i], s[i][j]), cl[j] = max(cl[j], s[i][j]);
		}
	for (int i = m; i <= n; i ++)
		for (int j = m; j <= n; j ++)
			lu[i][j] = max(max(lu[i - 1][j], lu[i][j - 1]), s[i - m + 1][j - m + 1]);
	for (int i = n - m + 1; i >= 1; i --)
		for (int j = m; j <= n; j ++)
			ld[i][j] = max(max(ld[i + 1][j], ld[i][j - 1]), s[i][j - m + 1]);
	for (int i = m; i <= n; i ++)
		for (int j = n - m + 1; j >= 1; j --)
			ru[i][j] = max(max(ru[i - 1][j], ru[i][j + 1]), s[i - m + 1][j]);
	for (int i = n - m + 1; i >= 1; i --)
		for (int j = n - m + 1; j >= 1; j --)
			rd[i][j] = max(max(rd[i + 1][j], rd[i][j + 1]), s[i][j]);

	int res = 0;
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= n; j ++) {
			res = max(res, lu[i][j] + ru[i][j + 1] + ld[i + 1][n]);
			res = max(res, lu[i][j] + ld[i + 1][j] + rd[1][j + 1]);
			res = max(res, ld[i][j] + rd[i][j + 1] + ru[i - 1][1]);
			res = max(res, ru[i][j] + rd[i + 1][j] + ld[1][j - 1]);
		}
	for (int i = m; i <= n; i ++) {
		int mx1 = 0, mx2 = 0;
		for (int j = i + m; j <= n; j ++) {
			mx1 = max(mx1, ln[j - m + 1]), mx2 = max(mx2, cl[j - m + 1]);
			res = max(res, ru[i][1] + mx1 + rd[j + 1][1]);
			res = max(res, ld[1][i] + mx2 + rd[1][j + 1]);
		}
	}

	cout << res << endl;

	return 0;
}

视频题解

Atcoder Beginner Contest 347(A ~ E 讲解)

欢迎大家关注我的B站空间:https://space.bilibili.com/630340560


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/506161.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙HarmonyOS应用开发之HID DDK开发指导

场景介绍 HID DDK&#xff08;HID Driver Develop Kit&#xff09;是为开发者提供的HID设备驱动程序开发套件&#xff0c;支持开发者基于用户态&#xff0c;在应用层开发HID设备驱动。提供了一系列主机侧访问设备的接口&#xff0c;包括创建设备、向设备发送事件、销毁设备。 …

腾讯云2核4G服务器优惠价格165元一年,限制500GB月流量

腾讯云轻量2核4G5M服务器租用价格165元1年、252元15个月、三年900元&#xff0c;配置为轻量2核4G5M、5M带宽、60GB SSD盘、500GB月流量、上海/广州/北京&#xff0c;腾讯云优惠活动 yunfuwuqiba.com/go/txy 腾讯云轻量2核4G5M服务器租用价格 腾讯云&#xff1a;轻量应用服务器1…

SpringBoot + Vue3邮件验证码功能的实现

后端 SpringBootmavenmysqlIDEA 后端负责编写邮件发送的接口逻辑&#xff0c;具体流程如下: 引入相关依赖配置邮箱信息编写邮件发送服务接口OK 引入依赖 <!-- https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-mail --> <dependen…

基于FreeRTOS系统的STM32简易遥控器设计

项目说明 该项目是一个基于FreeRTOS系统的Stm32遥控器设计。使用该项目主要是自己学习FreeRTOS的使用&#xff0c;以及模块化编程的思想。这个项目应该长期会有更新。 项目开源 github:https://github.com/snqx-lqh/Stm32RemoteControl gitee:https://gitee.com/snqx-lqh/S…

conda 创建 python3.10.12 环境

conda 创建 python3.10.12 环境 介绍使用前置条件&#xff1a;安装 conda配置环境变量验证 Conda 安装结果创建环境&#xff1a;python激活 Anaconda 环境 验证 Python 版本。 介绍 Conda是一个开源的包管理和环境管理系统&#xff0c;由Continuum Analytics公司开发。它可以安…

【InternLM 实战营第二期笔记】InternLM1.8B浦语大模型趣味 Demo

体验环境 平台&#xff1a;InternStudio GPU&#xff1a;10% 配置基础环境 studio-conda -o internlm-base -t demo 与 studio-conda 等效的配置方案 conda create -n demo python3.10 -y conda activate demo conda install pytorch2.0.1 torchvision0.15.2 torchaudio2…

使用MySQL和PHP创建一个公告板

目录 一、创建表 二、制作首页&#xff08;创建主题以及显示列表&#xff09; 三、制作各个主题的页面&#xff08;输入回帖和显示列表&#xff09; 四、制作消息的查询界面 五、制作读取数据库信息的原始文件 六、制作数据重置页面 七、效果图 八、问题 1、目前无法处…

轻量应用服务器16核32G28M腾讯云租用优惠价格4224元15个月

腾讯云16核32G服务器租用价格4224元15个月&#xff0c;买一年送3个月&#xff0c;配置为&#xff1a;轻量16核32G28M、380GB SSD盘、6000GB月流量、28M带宽&#xff0c;腾讯云优惠活动 yunfuwuqiba.com/go/txy 活动链接打开如下图&#xff1a; 腾讯云16核32G服务器租用价格 腾讯…

三栏布局——面试/笔试题

目录 三栏布局(两端指定宽度&#xff0c;中间自适应)三栏布局(平均分布) 三栏布局(两端指定宽度&#xff0c;中间自适应) 只介绍简单的写法&#xff0c;圣杯布局之类的比较复杂&#xff0c;实际上越简单越好&#xff0c;所以复杂的就不介绍了 flex布局 <!DOCTYPE html>…

vultr ubuntu 服务器远程桌面安装及连接

一. 概述 vultr 上开启一个linux服务器&#xff0c;都是以终端形式给出的&#xff0c;默认不带 ui 桌面的&#xff0c;那其实对于想使用服务器上浏览器时的情形不是很好。那有没有方法在远程服务器安装桌面&#xff0c;然后原程使用呢&#xff1f;至少ubuntu的服务器是有的&am…

HTTP/1.1、HTTP/2、HTTP/3 演变(计算机网络)

HTTP/1.1 相比 HTTP/1.0 提高了什么性能&#xff1f; HTTP/1.1 相比 HTTP/1.0 性能上的改进&#xff1a; 使用长连接改善了短连接造成的性能开销。支持管道网络传输&#xff0c;只要第一个请求发出去了&#xff0c;不必等其回来&#xff0c;就可以发第二个请求出去&#xff0c…

数据库----数据类型正确选择

mysql支持的数据类型&#xff1a; 数值型&#xff0c;如INT&#xff0c;BIGINT&#xff0c;FLOAT和decimal 日期和时间类型&#xff0c;如DATE,TIME和TIMESTAMP等 字符串类型&#xff0c;如VARCHAR,CHAR和BLOB 空间数据类型&#xff0c;如GEOMETRY&#xff0c;POINT和POLYGON J…

解决创建springboot项目时,无法选中java8的问题

主要原因是springboot3.0.0以上版本需要jdk17. 问题描述&#xff1a; 解决办法&#xff1a; 在Server url上点击齿轮&#xff0c;把http://start.springboot.io/更改为https://start.aliyun.com/ 效果如下

速通汇编(三)寄存器及汇编mul、div指令

一&#xff0c;寄存器及标志 AH&ALAX(accumulator)&#xff1a;累加寄存器BH&BLBX(base)&#xff1a;基址寄存器CH&CLCX(count)&#xff1a;计数寄存器DH&DLDX(data)&#xff1a;数据寄存器SP(Stack Pointer)&#xff1a;堆栈指针寄存器BP(Base Pointer)&#…

C#调用FreeSpire.Office读取word数据的基本用法

FreeSpire.Office是Spire.Office的免费版本&#xff0c;后者支持全面、复杂的office文件操作功能&#xff0c;包括文件格式转换、文档操作、文档打印等&#xff0c;详细介绍见下图及参考文献1。本文学习FreeSpire.Office的基本用法并用其获取word文档的基本信息。   新建Win…

python统计分析——双样本均值比较

参考资料&#xff1a;python统计分析【托马斯】 1、配对样本t检验 在进行两组数据之间的比较时&#xff0c;有两种情况必须区分开。在第一种情况中&#xff0c;同一对象在不同时候的两个记录值进行相互比较。例如&#xff0c;用学生们进入初中时的身高和他们一年后的身高&…

学习transformer模型-Positional Encoding位置编码的简明介绍

今天介绍transformer模型的positional encoding 位置编码 背景 位置编码用于为序列中的每个标记或单词提供一个相对位置。在阅读句子时&#xff0c;每个单词都依赖于其周围的单词。例如&#xff0c;有些单词在不同的上下文中具有不同的含义&#xff0c;因此模型应该能够理解这…

鸿蒙OS开发实例:【ArkTS 实现MQTT协议】

介绍 MQTT是物联网中的一种协议&#xff0c;在HarmonyOS API9平台&#xff0c;解决方案以C库移植为实现方案。 遥遥领先的平台&#xff0c;使用MQTT怎能不遥遥领先呢&#xff01; 新年快乐&#xff0c;本篇将带领你手把手实现HarmonyOS ArkTS语言的MQTT协议。 准备 阅读…

LLM--提示词Propmt的概念、作用及如何设计提示词

文章目录 1. 什么是提示词&#xff1f;2. 提示词的作用3. 如何设计提示词&#xff1f;3.1. 提供详细的信息3.2. 指定角色3.3. 使用分隔符和特殊符号3.4. 提供示例3.5. 少量示例的思维链&#xff08;COT&#xff09;模型3.6. 思维树&#xff08;TOT&#xff09;模型3.7. 自洽性 …

【4】单链表(有虚拟头节点)

【4】单链表&#xff08;有虚拟头节点&#xff09; 1、虚拟头节点2、构造方法3、node(int index) 返回索引位置的节点4、添加5、删除6、ArrayList 复杂度分析(1) 复杂度分析(2) 数组的随机访问(3) 动态数组 add(E element) 复杂度分析(4) 动态数组的缩容(5) 复杂度震荡 7、单链…