【InternLM 实战营第二期笔记】InternLM1.8B浦语大模型趣味 Demo

体验环境

平台:InternStudio

GPU:10%

配置基础环境

studio-conda -o internlm-base -t demo

与 studio-conda 等效的配置方案

conda create -n demo python==3.10 -y
conda activate demo
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

激活环境

conda activate demo

部署 InternLM2-Chat-1.8B 模型进行智能对话

安装依赖包

pip install huggingface-hub==0.17.3
pip install transformers==4.34 
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2 
pip install matplotlib==3.8.3 
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99

下载模型

mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo

编辑/root/demo/download_mini.py文件

注:如果使用InternStudio平台进行实验不建议花费时间和空间去下载模型,可以直接使用/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/目录下的模型进行实验

vim /root/demo/download_mini.py

下载模型的脚本内容

import os
from modelscope.hub.snapshot_download import snapshot_download

# 创建保存模型目录
os.system("mkdir /root/models")

# save_dir是模型保存到本地的目录
save_dir="/root/models"

snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b", 
                  cache_dir=save_dir, 
                  revision='v1.1.0')

执行下载命令

python /root/demo/download_mini.py

编辑cli_demo.py

vim cli_demo.py

运行cli_demo.py

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


#model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b" #如果自己下载模型的话使用这一条,注释后一条
model_name_or_path = "/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break

    length = 0
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)

执行cli_demo.py

python cli_demo.py

运行结果:

输入exit结束聊天

部署实战营优秀作品 八戒-Chat-1.8B 模型

八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳均是在第一期实战营中运用InternLM2-Chat-1.8B模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为Roleplay-with-XiYou子项目之一,八戒-Chat-1.8B能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。

其他优秀实战营项目链接

  • 八戒-Chat-1.8B:https://www.modelscope.cn/models/JimmyMa99/BaJie-Chat-mini/summary
  • Chat-嬛嬛-1.8B:https://openxlab.org.cn/models/detail/BYCJS/huanhuan-chat-internlm2-1_8b
  • Mini-Horo-巧耳:https://openxlab.org.cn/models/detail/SaaRaaS/Horowag_Mini

克隆八戒代码仓

cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2

下载运行

python /root/Tutorial/helloworld/bajie_download.py

运行

streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006

本地映射端口的命令

# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374

运行结果:

使用 Lagent 运行 InternLM2-Chat-7B 模型

注:这一节课程需要切换环境使用 30% A100

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。它的整个框架图如下:

Lagent 的特性总结如下:

  • 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
  • 接口统一,设计全面升级,提升拓展性,包括:
    • Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
    • Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
    • Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
  • 文档全面升级,API 文档全覆盖。

配置基础环境

重新开启开发机,输入命令,开启 conda 环境

conda activate demo

进入文件夹

cd /root/demo

使用 git 命令下载 Lagent 相关的代码库:

git clone https://gitee.com/internlm/lagent.git
cd /root/demo/lagent

切换分支

git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac

源码安装

pip install -e . # 源码安装

使用 Lagent 运行 InternLM2-Chat-7B 模型为内核的智能体

进入lagent目录

cd /root/demo/lagent

软链接模型目录

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

修改examples/internlm2_agent_web_demo_hf.py文件

代码内容:

# 其他代码...
value='/root/models/internlm2-chat-7b'   #修改为模型目录
# 其他代码...

运行命令

streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006

实践结果

输入命令:请解方程 2*X=1360 之中 X 的结果

实践部署 浦语·灵笔2 模型

介绍

浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:

  • 自由指令输入的图文写作能力: 浦语·灵笔2 可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。
  • 准确的图文问题解答能力:浦语·灵笔2 具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。
  • 杰出的综合能力: 浦语·灵笔2-7B 基于 书生·浦语2-7B 模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过 GPT-4V 和 Gemini Pro。

环境

选用 50% A100 进行开发:

安装依赖

conda activate demo
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5

下载InternLM-XComposer 仓库相关的代码资源

cd /root/demo

克隆代码仓

git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626

构造模型软链接

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b

图文写作实战

启动命令

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py  \
--code_path /root/models/internlm-xcomposer2-7b \
--private \
--num_gpus 1 \
--port 6006

运行界面

图片理解实战

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_chat.py  \
--code_path /root/models/internlm-xcomposer2-vl-7b \
--private \
--num_gpus 1 \
--port 6006

打开 http://127.0.0.1:6006 (上传图片后) 键入内容示例如下:

请分析一下图中内容

作业

基础作业 (结营必做)

使用 InternLM2-Chat-1.8B 模型生成 300 字的小故事(需截图)

进阶作业 (优秀学员必做)

熟悉 huggingface 下载功能,使用 huggingface_hub python 包,下载 InternLM2-Chat-7B 的 config.json 文件到本地(需截图下载过程)

脚本内容

import os 
from huggingface_hub import hf_hub_download  # Load model directly 

hf_hub_download(repo_id="internlm/internlm-7b", filename="config.json")

完成 浦语·灵笔2 的 图文创作 及 视觉问答 部署(需截图)

图文创作

视觉问答

完成 Lagent 工具调用 数据分析 Demo 部署(需截图)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/506146.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用MySQL和PHP创建一个公告板

目录 一、创建表 二、制作首页(创建主题以及显示列表) 三、制作各个主题的页面(输入回帖和显示列表) 四、制作消息的查询界面 五、制作读取数据库信息的原始文件 六、制作数据重置页面 七、效果图 八、问题 1、目前无法处…

轻量应用服务器16核32G28M腾讯云租用优惠价格4224元15个月

腾讯云16核32G服务器租用价格4224元15个月,买一年送3个月,配置为:轻量16核32G28M、380GB SSD盘、6000GB月流量、28M带宽,腾讯云优惠活动 yunfuwuqiba.com/go/txy 活动链接打开如下图: 腾讯云16核32G服务器租用价格 腾讯…

三栏布局——面试/笔试题

目录 三栏布局(两端指定宽度&#xff0c;中间自适应)三栏布局(平均分布) 三栏布局(两端指定宽度&#xff0c;中间自适应) 只介绍简单的写法&#xff0c;圣杯布局之类的比较复杂&#xff0c;实际上越简单越好&#xff0c;所以复杂的就不介绍了 flex布局 <!DOCTYPE html>…

vultr ubuntu 服务器远程桌面安装及连接

一. 概述 vultr 上开启一个linux服务器&#xff0c;都是以终端形式给出的&#xff0c;默认不带 ui 桌面的&#xff0c;那其实对于想使用服务器上浏览器时的情形不是很好。那有没有方法在远程服务器安装桌面&#xff0c;然后原程使用呢&#xff1f;至少ubuntu的服务器是有的&am…

HTTP/1.1、HTTP/2、HTTP/3 演变(计算机网络)

HTTP/1.1 相比 HTTP/1.0 提高了什么性能&#xff1f; HTTP/1.1 相比 HTTP/1.0 性能上的改进&#xff1a; 使用长连接改善了短连接造成的性能开销。支持管道网络传输&#xff0c;只要第一个请求发出去了&#xff0c;不必等其回来&#xff0c;就可以发第二个请求出去&#xff0c…

数据库----数据类型正确选择

mysql支持的数据类型&#xff1a; 数值型&#xff0c;如INT&#xff0c;BIGINT&#xff0c;FLOAT和decimal 日期和时间类型&#xff0c;如DATE,TIME和TIMESTAMP等 字符串类型&#xff0c;如VARCHAR,CHAR和BLOB 空间数据类型&#xff0c;如GEOMETRY&#xff0c;POINT和POLYGON J…

解决创建springboot项目时,无法选中java8的问题

主要原因是springboot3.0.0以上版本需要jdk17. 问题描述&#xff1a; 解决办法&#xff1a; 在Server url上点击齿轮&#xff0c;把http://start.springboot.io/更改为https://start.aliyun.com/ 效果如下

速通汇编(三)寄存器及汇编mul、div指令

一&#xff0c;寄存器及标志 AH&ALAX(accumulator)&#xff1a;累加寄存器BH&BLBX(base)&#xff1a;基址寄存器CH&CLCX(count)&#xff1a;计数寄存器DH&DLDX(data)&#xff1a;数据寄存器SP(Stack Pointer)&#xff1a;堆栈指针寄存器BP(Base Pointer)&#…

C#调用FreeSpire.Office读取word数据的基本用法

FreeSpire.Office是Spire.Office的免费版本&#xff0c;后者支持全面、复杂的office文件操作功能&#xff0c;包括文件格式转换、文档操作、文档打印等&#xff0c;详细介绍见下图及参考文献1。本文学习FreeSpire.Office的基本用法并用其获取word文档的基本信息。   新建Win…

python统计分析——双样本均值比较

参考资料&#xff1a;python统计分析【托马斯】 1、配对样本t检验 在进行两组数据之间的比较时&#xff0c;有两种情况必须区分开。在第一种情况中&#xff0c;同一对象在不同时候的两个记录值进行相互比较。例如&#xff0c;用学生们进入初中时的身高和他们一年后的身高&…

学习transformer模型-Positional Encoding位置编码的简明介绍

今天介绍transformer模型的positional encoding 位置编码 背景 位置编码用于为序列中的每个标记或单词提供一个相对位置。在阅读句子时&#xff0c;每个单词都依赖于其周围的单词。例如&#xff0c;有些单词在不同的上下文中具有不同的含义&#xff0c;因此模型应该能够理解这…

鸿蒙OS开发实例:【ArkTS 实现MQTT协议】

介绍 MQTT是物联网中的一种协议&#xff0c;在HarmonyOS API9平台&#xff0c;解决方案以C库移植为实现方案。 遥遥领先的平台&#xff0c;使用MQTT怎能不遥遥领先呢&#xff01; 新年快乐&#xff0c;本篇将带领你手把手实现HarmonyOS ArkTS语言的MQTT协议。 准备 阅读…

LLM--提示词Propmt的概念、作用及如何设计提示词

文章目录 1. 什么是提示词&#xff1f;2. 提示词的作用3. 如何设计提示词&#xff1f;3.1. 提供详细的信息3.2. 指定角色3.3. 使用分隔符和特殊符号3.4. 提供示例3.5. 少量示例的思维链&#xff08;COT&#xff09;模型3.6. 思维树&#xff08;TOT&#xff09;模型3.7. 自洽性 …

【4】单链表(有虚拟头节点)

【4】单链表&#xff08;有虚拟头节点&#xff09; 1、虚拟头节点2、构造方法3、node(int index) 返回索引位置的节点4、添加5、删除6、ArrayList 复杂度分析(1) 复杂度分析(2) 数组的随机访问(3) 动态数组 add(E element) 复杂度分析(4) 动态数组的缩容(5) 复杂度震荡 7、单链…

【Linux 10】环境变量

文章目录 &#x1f308; Ⅰ 命令行参数⭐ 1. main 函数的参数⭐ 2. main 函数参数的意义⭐ 3. 查看 argv 数组的内容⭐ 4. 命令行参数结论⭐ 5. 为什么要有命令行参数⭐ 6. 命令行参数传递由谁执行 &#x1f308; Ⅱ 环境变量基本概念⭐ 1. 常见环境变量 &#x1f308; Ⅲ 查看…

LeetCode_876(链表的中间结点)

//双指针//时间复杂度O(n) 空间复杂度O(1)public ListNode middleNode(ListNode head) {ListNode slowhead,fast head;while (fast!null && fast.next!null){slow slow.next;fast fast.next.next;}return slow;} 1->2->3->4->5->null 快指针移动两个…

9款免费云服务器,最长永久免费使用

随着云计算技术的快速发展&#xff0c;越来越多的企业和个人开始选择使用云服务器。云服务器提供了灵活、可扩展且易于管理的资源&#xff0c;使得用户可以根据需求随时调整计算能力。本文将分享9款免费云服务器&#xff0c;其中最长可永久免费使用&#xff0c;为用户提供了更多…

flutter官方案例context_menus

1&#xff1a;根据项目中的案例进行部署 2&#xff1a;运行查看有什么用&#xff0c;可不可以直接复制粘贴 案例地址 https://github.com/flutter/samples/tree/main/context_menus案例展示方法 直接把这个文件夹中的文件复制到lib文件夹中 3&#xff0c;19&#xff0c;4的fl…

HTML常用的图片标签和超链接标签

目录 一.常用的图片标签和超链接标签&#xff1a; 1.超链接标签&#xff1a; 前言: 超链接的使用&#xff1a; target属性: 1)鼠标样式&#xff1a; 2)颜色及下划线: 总结: 2.图片标签&#xff1a; 前言: img的使用: 设置图片&#xff1a; 1.设置宽度和高度: 2.HTM…

内网渗透之黄金票据的制作

1、黄金票据是用来留后门的也叫做未知权限&#xff0c;前提条件是你已经拿到了域控的最高权限 一、开始之前我们先来了解一下kerberos Kerberos是一种由MIT&#xff08;麻省理工大学&#xff09;提出的一种网络身份验证协议。它旨在通过使用密钥加密技术为客户端/服务器应…