yolov5+关键点检测实现溺水检测与警报提示(代码+原理)

往期热门博客项目回顾:

计算机视觉项目大集合

改进的yolo目标检测-测距测速

路径规划算法

图像去雨去雾+目标检测+测距项目

交通标志识别项目

yolo系列-重磅yolov9界面-最新的yolo

姿态识别-3d姿态识别

深度学习小白学习路线

//正文开始!

人体关键点检测与人体检测技术结合应用于溺水检测,其意义在于能够实时准确地识别和定位正在水中挣扎或处于危险状态的人物,从而提高监控和预警效率,减少因未能及时发现而导致的溺水悲剧。具体原理和优势包括以下几个方面:
在这里插入图片描述

  1. 快速定位:首先,通过人体检测技术可以在视频流或图像中迅速锁定人物的位置,尤其是在复杂的水体环境中区分人体与其他物体。

  2. 精细识别:人体关键点检测则能进一步提供关于人体姿态和动作的详细信息,如手脚位置、头部朝向等。当人在溺水时,会有特定的动作特征,如无规律的手臂挥动、腿部上下浮动、面部露出水面的时间和次数减少等,这些特征可通过关键点变化体现出来。

  3. 行为分析:通过对检测到的关键点运动轨迹和姿势变化进行分析,可以识别出是否属于潜在的溺水行为模式。比如,正常的游泳者与溺水者在水面活动特点上存在显著差异,溺水者往往无法维持有效的划水动作或头颈部位置控制。

  4. 自动化预警:基于人工智能算法的系统能够在无人值守的情况下持续工作,一旦检测到可能的溺水行为,系统可以自动触发警报,通知相关人员及时介入救援。
    在这里插入图片描述

结合YOLOv5和关键点检测技术主要用于构建一个能够同时进行目标检测和关键点定位的系统。YOLOv5是一种高效的目标检测算法,具有速度快、准确性高的特点,而关键点检测则是用来预测目标物内部的关键点位置,如人体的手肘、膝盖、面部特征点等。

结合yolov5-主要创新点

在YOLOv5的基础上加入关键点检测的具体原理和步骤通常包括:

  1. 模型架构修改
    需要在YOLOv5的基础网络之上添加关键点预测分支。这个分支通常是回归网络,用于预测每个检测到的目标框内的关键点坐标。

  2. 训练数据准备
    准备包含标注关键点信息的数据集,如COCO数据集就包含了丰富的物体检测和关键点标注信息。

  3. 损失函数设计
    修改YOLOv5原有的损失函数,添加关键点定位误差的部分,如Smooth L1 Loss或者heatmap-based的方法(如 heatmap regression 或 heatmap classification)。

  4. 模型训练
    根据新的模型结构和训练数据进行训练,使得模型不仅能够检测出图像中的物体,还能准确地标记出每个目标的关键点位置。

例如,在CSDN技术社区中提到的“yolov5人脸检测,带关键点检测”的案例,就是在YOLOv5的项目中通过修改模型结构和配置文件,实现了人脸检测的同时还能够对人脸的关键点进行精准回归。对于不同任务,可能还需要根据实际情况调整模型结构和训练策略。

溺水检测

class Tracker:
    def __init__(self):
        # Store the center positions of the objects
        self.center_points = {}
        # Keep the count of the IDs
        # each time a new object id detected, the count will increase by one
        self.id_count = 0


    def update(self, objects_rect):
        # Objects boxes and ids
        objects_bbs_ids = []

        # Get center point of new object
        for rect in objects_rect:
            x, y, w, h = rect
            cx = (x + x + w) // 2
            cy = (y + y + h) // 2

警报提示代码

"frame_check = 7\n",
    "flag = 0\n",
    "while True:\n",
    "    ret,frame=cap.read()\n",
    "    if ret==False:\n",
    "        break\n",
    "    #frame=cv2.resize(frame,(1020,500))\n",
    "    results = model(frame)\n",
    "    imgRGB = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
    "    \n",
    "    #Apply the mediapipe pose detection module for detection\n",
    "    result = pose.process(imgRGB)\n",
    "    #print(results.pose_landmarks)\n",
    "    h , w , c = frame.shape\n",
    "    # Draw landmarks\n",
    "    if result.pose_landmarks:\n",
    "        mpDraw.draw_landmarks(frame,result.pose_landmarks, mpPose.POSE_CONNECTIONS)\n",
    "        landmarks = result.pose_landmarks.landmark\n",
    "        \n",
    "        #for land in mpPose.PoseLandmark:\n",

因此,将人体关键点检测与人体检测技术整合起来,不仅可以大大提高监控系统的智能化程度,还可以为公共场所的安全管理、水上救援行动提供有力的技术支持。然而,这类技术仍需面对复杂光线、水体波动等因素带来的挑战,并且在算法设计上需要充分考虑各种特殊情况以避免误报和漏报。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/504046.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库mysql--------------脚本增量备份大全

目录 一、数据库上云迁移的方案? 1.1 方案一:使用脱机冷备份 1.2 方案二: 二、脚本增量备份 三、总结 一、数据库上云迁移的方案? 1.1 方案一:使用脱机冷备份 冷迁移----物理冷备 首先需要关闭数据库服务&#xff…

2024免费且保证100%的恢复成功率的数据恢复软件EasyRecovery

EasyRecovery是一款在市场上广受欢迎的数据恢复软件,具备许多强大而实用的功能。首先,它支持多种媒体类型的数据恢复,包括硬盘驱动器、存储设备、光学媒体、多媒体/移动设备以及RAID系统等。这意味着,无论数据是从哪种类型的设备中…

统计XML文件内标签的种类和其数量及将xml格式转换为yolov5所需的txt格式

1、统计XML文件内标签的种类和其数量 对于自己标注的数据集,需在标注完成后需要对标注好的XML文件校验,下面是代码,只需将SrcDir换成需要统计的xml的文件夹即可。 import os from tqdm import tqdm import xml.dom.minidomdef ReadXml(File…

【科技素养题】少儿编程 蓝桥杯青少组科技素养题 信息素养真题及解析第26套

少儿编程 科技素养 信息素养真题第26套 1、本次考试名称STEMA是STEM Assessment 的缩写。在保持第一个和最后一个字母不变的情况下,将 STEMA 的字母排列组合,一共可以组成()个与原先不同的组合。 A、5 B、6 C、12 D、20 答案:A 考点分析:主要考查小朋友们的逻辑思维…

python安装删除以及pip的使用

目录 你无法想象新手到底会在什么地方出问题——十二个小时的血泪之言! 问题引入 python modify setup 隐藏文件夹 环境变量的配置 彻底删除python 其他零碎发现 管理员终端 删不掉的windous应用商店apps 发现问题 总结 你无法想象新手到底会在什么地方…

深入理解数据结构(2):顺序表和链表详解

文章主题:顺序表和链表详解🌱所属专栏:深入理解数据结构📘作者简介:更新有关深入理解数据结构知识的博主一枚,记录分享自己对数据结构的深入解读。😄个人主页:[₽]的个人主页&#x…

与webpack类似的工具还有哪些?区别?

文章目录 一、模块化工具二、详细对比RollupParcelSnowpackVitewebpack 参考文献 一、模块化工具 模块化是一种处理复杂系统分解为更好的可管理模块的方式 可以用来分割,组织和打包应用。每个模块完成一个特定的子功能,所有的模块按某种方法组装起来&a…

赋能工业智能化升级 | 基于ACM32 MCU的工业通用变频器方案

近年来,随着智能制造对节能的更高要求,通用变频器在工业领域的应用愈加广泛。变频器是一种先进的调速控制设备,通过对电源频率的控制可以实现对电机转速的精确调节,从而提高设备的性能和节能效果。 01 变频器概述 变频器&#xf…

图片标注编辑平台搭建系列教程(6)——fabric渲染原理

原理 fabric的渲染步骤大致如下: 渲染前都设置背景图然后调用ctx.save(),存储画布的绘制状态参数然后调用每个object自身的渲染方法最后调用ctx.restore(),恢复画布的保存状态后处理,例如控制框的渲染等 值得注意的是&#xff0…

分享一个nhanes数据报错的解决方案

美国国家健康与营养调查( NHANES, National Health and Nutrition Examination Survey)是一项基于人群的横断面调查,旨在收集有关美国家庭人口健康和营养的信息。 地址为:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 今天分享…

二叉树寻找祖先问题-算法通关村

二叉树寻找祖先问题-算法通关村 1 最近公共祖先问题 LeetCode236:给定一个二叉树,找到该树中两个指定节点的最近公共祖先。 最近公共祖先的定义为:“对于有根树T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足是…

绿联 安装轻量源代码管理器 - Gitea

更多信息点击 1、镜像 gitea/gitea:latest 2、安装 2.1、拉取镜像 2.2、创建容器 本示例中限制了内容最大大小为4GB,也可以不做限制。 2.3、基础设置 开启 交互、TTY、重启策略选择最后一项。 2.4、网络 选择桥接即可。 2.5、存储空间 装在路径必须是“/data”…

车载电子电器架构 —— 电气架构开发计划

车载电子电器架构 —— 电气架构开发计划 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明…

中国象棋AI在线对弈游戏源码

源码介绍 这是一款html5小游戏,主要功能在于js,带一套皮肤、内置ai算法,有能力的可以自行修改。 源码截图 下载地址 链接:https://pan.baidu.com/s/1fYp1HWsd91nJOdX1M8RFtQ?pwdh2iz 提取码:h2iz

Chrome浏览器 安装Vue插件vue-devtools

前言 vue-devtools 是一个为 Vue.js 开发者设计的 Chrome 插件。它可以让你更轻松地审查和调试 Vue 应用程序。与普通的浏览器控制台工具不同,Vue.js devtools 专为 Vue 的响应性数据和组件结构量身定做。 1. 功能介绍 组件树浏览:这个功能可以让你查…

如何在极狐GitLab 自定义 Pages 域名、SSL/TLS 证书

本文作者:徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了在极狐GitLab 用户…

算法学习——LeetCode力扣单调栈篇

算法学习——LeetCode力扣单调栈篇 739. 每日温度 739. 每日温度 - 力扣(LeetCode) 描述 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个…

【带你了解动态规划】

🔥博主:程序员不想YY啊🔥 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家💫 🤗点赞🎈收藏⭐再看💫养成习惯 🌈希望本文对您有所裨益,如有…

milvus knowhere源码编译测试

简介 Knowhere 是 Milvus 的核心向量执行引擎,集成了Faiss、Hnswlib和Annoy等多个向量相似度搜索库。 编译环境 操作系统: Ubuntu 22.04.4 gcc/g:11.4.0 cmake: 3.27.7 安装依赖 apt install build-essential libopenblas-dev libaio-dev python3-dev python…

文生视频大模型Sora的复现经验

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…