python与深度学习(十):CNN和cifar10二

目录

  • 1. 说明
  • 2. cifar10的CNN模型测试
    • 2.1 导入相关库
    • 2.2 加载数据和模型
    • 2.3 设置保存图片的路径
    • 2.4 加载图片
    • 2.5 图片预处理
    • 2.6 对图片进行预测
    • 2.7 显示图片
  • 3. 完整代码和显示结果
  • 4. 多张图片进行测试的完整代码以及结果

1. 说明

本篇文章是对上篇文章训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。

2. cifar10的CNN模型测试

2.1 导入相关库

在这里导入需要的第三方库如cv2,如果没有,则需要自行下载。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import cifar10

2.2 加载数据和模型

把cifar10数据集进行加载,并且把训练好的模型也加载进来。

# cifar10数据集列表
class_names = ["airplane", "automobile", "bird", "cat", "deer",
               "dog", "frog", "horse", "ship", "truck"]

# 加载fashion数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 加载cnn_cifar10_4.h5文件,重新生成模型对象
recons_model = keras.models.load_model('cnn_cifar10_4.h5')

2.3 设置保存图片的路径

将数据集的某个数据以图片的形式进行保存,便于测试的可视化。
在这里设置图片存储的位置。


# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1000.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[1000]).save(test_file_path)

在书写完上述代码后,需要在代码的当前路径下新建一个imgs的文件夹用于存储图片,如下。
在这里插入图片描述

执行完上述代码后就会在imgs的文件中可以发现多了一张图片,如下(下面测试了很多次)。
在这里插入图片描述

2.4 加载图片

采用cv2对图片进行加载,用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是三通道的,因此不只用取单通道,而是三通道。

# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(32,32)
test_img = cv2.resize(test_img, (32, 32))

2.5 图片预处理

对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。

# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 32, 32, 3)

2.6 对图片进行预测

将图片输入给训练好我的模型并且进行预测。
预测的结果是10个概率值,所以需要进行处理, np.argmax()是得到概率值最大值的序号,也就是预测的数字。

# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别:', class_names[class_id])

2.7 显示图片

对预测的图片进行显示,把预测的数字显示在图片上。
下面5行代码分别是创建窗口,设定窗口大小,显示图片,停留图片,清除内存。

# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

3. 完整代码和显示结果

以下是完整的代码和图片显示结果。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import cifar10
# cifar10数据集列表
class_names = ["airplane", "automobile", "bird", "cat", "deer",
               "dog", "frog", "horse", "ship", "truck"]

# 加载fashion数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 加载cnn_cifar10_4.h5文件,重新生成模型对象
recons_model = keras.models.load_model('cnn_cifar10_4.h5')
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1000.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[1000]).save(test_file_path)
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(32,32)
test_img = cv2.resize(test_img, (32, 32))
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 32, 32, 3)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别:', class_names[class_id])
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 [==============================] - 0s 173ms/step
test.png的预测概率: [[5.1407650e-08 1.3184264e-07 1.4382408e-05 3.0730411e-03 6.6092167e-07
  9.9690622e-01 3.4352513e-07 4.4902617e-06 5.1169474e-07 1.9515875e-07]]
test.png的预测概率: 0.9969062
test.png的所属类别: dog

在这里插入图片描述

4. 多张图片进行测试的完整代码以及结果

为了测试更多的图片,引入循环进行多次测试,效果更好。

from tensorflow import keras
from keras.datasets import cifar10
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np

# cifar10数据集列表
class_names = ["airplane", "automobile", "bird", "cat", "deer",
               "dog", "frog", "horse", "ship", "truck"]
# 加载mnist数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 加载cnn_fashion.h5文件,重新生成模型对象
recons_model = keras.models.load_model('cnn_cifar10_4.h5')

prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):
    path1 = input("input the test picture path:")
    # 创建图片保存路径
    test_file_path = os.path.join(sys.path[0], 'imgs', path1)
    # 存储测试数据的任意一个
    num = int(input("input the test picture num:"))
    Image.fromarray(x_test[num]).save(test_file_path)
    # 加载本地test.png图像
    image = cv2.imread(test_file_path)
    # 复制图片
    test_img = image.copy()
    # 将图片大小转换成(28,28)
    test_img = cv2.resize(test_img, (32, 32))
    # 预处理: 归一化 + reshape
    new_test_img = (test_img/255.0).reshape(1, 32, 32, 3)
    # 预测
    y_pre_pro = recons_model.predict(new_test_img, verbose=1)
    # 哪一类数字
    class_id = np.argmax(y_pre_pro, axis=1)[0]
    print('test.png的预测概率:', y_pre_pro)
    print('test.png的预测概率:', y_pre_pro[0, class_id])
    print('test.png的所属类别:', class_names[class_id])
    # # 显示
    cv2.namedWindow('img', 0)
    cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
    cv2.imshow('img', image)
    cv2.waitKey()
    cv2.destroyAllWindows()

input the number of test picture :2
input the test picture path:90.jpg
input the test picture num:1
1/1 [==============================] - 0s 149ms/step
test.png的预测概率: [[1.5192369e-05 1.2153896e-03 4.3699760e-10 8.3202184e-07 6.7535249e-09
  2.5758654e-10 2.1669943e-07 7.0233480e-12 9.9875784e-01 1.0427103e-05]]
test.png的预测概率: 0.99875784
test.png的所属类别: ship

在这里插入图片描述

input the test picture path:91.jpg
input the test picture num:3
1/1 [==============================] - 0s 144ms/step
test.png的预测概率: [[9.3968987e-01 7.0652168e-06 8.8076144e-03 3.7453551e-04 2.6135262e-02
  9.9803242e-07 9.7372030e-08 1.5685426e-07 2.4942497e-02 4.1973537e-05]]
test.png的预测概率: 0.9396899
test.png的所属类别: airplane

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/50212.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java IO,BIO、NIO、AIO

操作系统中的 I/O 以上是 Java 对操作系统的各种 IO 模型的封装,【文件的输入、输出】在文件处理时,其实依赖操作系统层面的 IO 操作实现的。【把磁盘的数据读到内存种】操作系统中的 IO 有 5 种: 阻塞、 非阻塞、【轮询】 异步、 IO复…

【java的类型数据】——八大类型数据

文章目录 前言字面常量字面常量的分类: 数据类型和变量变量的包装类和范围范围整型变量byteintshortlong 浮点型变量双精度浮点型double单精度浮点型float 字符型变量char布尔型变量 boolean 类型转换自动类型转换(隐式)强制类型转换(显式&am…

Android跨进程传大图思考及实现——附上原理分析

1.抛一个问题 这一天,法海想锻炼小青的定力,由于Bitmap也是一个Parcelable类型的数据,法海想通过Intent给小青传个特别大的图片 intent.putExtra("myBitmap",fhBitmap)如果“法海”(Activity)使用Intent去传递一个大的Bitmap给“…

排序链表——力扣148

文章目录 题目描述法一 自顶向下归并排序法二)自底向上归并排序 题目描述 题目的进阶问题要求达到 O(nlogn) 的时间复杂度和 O(1) 的空间复杂度,时间复杂度是 O(nlogn) 的排序算法包括归并排序、堆排序和快速排序(快速排序的最差时间复杂度是…

推荐带500创作模型的付费创作V2.1.0独立版系统源码

ChatGPT 付费创作系统 V2.1.0 提供最新的对应版本小程序端,上一版本增加了 PC 端绘画功能, 绘画功能采用其他绘画接口 – 意间 AI,本版新增了百度文心一言接口。 后台一些小细节的优化及一些小 BUG 的处理,前端进行了些小细节优…

【Java面试丨企业场景】常见技术场景

一、单点登录怎么实现的 1. 介绍 单点登录(Single Sign On,SSO):只需要登录一次,就可以访问所有信任的应用系统 2. 解决方案 JWT解决单点登录问题 用户访问应用系统,会在网关判断Token是否有效如果Tok…

极简并优雅的在IDEA使用Git远程拉取项目和本地推送项目

连接Git 搜索Git然后将你下载好的Git的文件目录位置给他弄进去就行 本地分支管理 分支管理通常是在IDEA的右下角找到 连接远程仓库 方法1本地项目推送到远程仓库 如果当前项目还没交给Git管理的则按照以下图所示先将项目交给Git管理 然后此时文件都会是红色的,这表…

《向量数据库指南》:向量数据库Pinecone如何集成LangChain (一)

目录 LangChain中的检索增强 建立知识库 欢迎使用Pinecone和LangChain的集成指南。本文档涵盖了将高性能向量数据库Pinecone与基于大型语言模型(LLMs)构建应用程序的框架LangChain集成的步骤。 Pinecone使开发人员能够基于向量相似性搜索构建可扩展的实时推荐和搜索系统…

Meta分析的选题与文献计量分析CiteSpace应用丨R语言Meta分析【数据清洗、精美作图、回归分析、诊断分析、不确定性及贝叶斯应用】

目录 ​专题一、Meta分析的选题与文献计量分析CiteSpace应用 专题二、Meta分析与R语言数据清洗及相关应用 专题三、R语言Meta分析与精美作图 专题四、R语言Meta回归分析 专题五、R语言Meta诊断分析与进阶 专题六、R语言Meta分析的不确定性及贝叶斯应用 专题七、深度拓展…

零信任网络架构与实现技术的研究与思考

目前,国外已有较多有关零信任网络的研究与实践,包括谷歌的 BeyondCorp、BeyondProd,软件定义边界(Software Defined Perimeter,SDP) 及盖特提出的“持续自适应风险与信任评估”等。国内也有不少安全厂商积极…

Istio网关Gateway 启用TLS

Istio网关Gateway概述 Istio网关Gateway是一个负责处理南北向流量的组件,它通常会暴露服务网格内部的服务,以便外部的请求能够访问到服务网格中的服务。Istio网关Gateway支持多种协议,包括HTTP、HTTPS和GRPC等。 在Istio网关Gateway中&#…

DevOps-Jenkins

Jenkins Jenkins是一个可扩展的持续集成引擎,是一个开源软件项目,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能。 官网 应用场景 场景一 研发人员上传开发好的代码到github代码仓库需要将代码下载nginx服务器部署手动下载再…

C++之poll与epoll总结(一百六十九)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…

优化基于tcp,socket的ftp文件传输程序

原始程序: template_ftp_server_old.py: import socket import json import struct import os import time import pymysql.cursorssoc socket.socket(socket.AF_INET, socket.SOCK_STREAM) HOST 192.168.31.111 PORT 4101 soc.bind((HOST,PORT)) p…

MVC与MVVM模式的区别

一、MVC Model(模型):用于处理应用程序数据逻辑,负责在数据库中存取数据。处理数据的crud View(视图):处理数据显示的部分。通常视图是依据模型数据创建的。 Controller(控制器&…

25.6 matlab里面的10中优化方法介绍—— 遗传算法(matlab程序)

1.简述 遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解(所找到的解是全局最优解)的方法。 参数编码、初始群体的设定…

Generative Diffusion Prior for Unified Image Restoration and Enhancement 论文阅读笔记

这是CVPR2023的一篇用diffusion先验做图像修复和图像增强的论文 之前有一篇工作做了diffusion先验(Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song, “Denoising diffusion restoration models,” arXiv preprint arXiv:2201.11793, 2022. 2, 4, 6,…

【万字长文】SpringBoot整合SpringSecurity+JWT+Redis完整教程(提供Gitee源码)

前言:最近在学习SpringSecurity的过程中,参考了很多网上的教程,同时也参考了一些目前主流的开源框架,于是结合自己的思路写了一个SpringBoot整合SpringSecurityJWTRedis完整的项目,从0到1写完感觉还是收获到不少的&…

前端,js , Error in created hook: TypeError ,有bug了

怎么兄弟,遇到bug了???你开心吗,哈哈哈哈

论文笔记--Skip-Thought Vectors

论文笔记--Skip-Thought Vectors 1. 文章简介2. 文章概括3 文章重点技术3.1 Skip Thought Vectors3.2 词表拓展 4. 文章亮点5. 原文传送门6. References 1. 文章简介 标题:Skip-Thought Vectors作者:Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Rich…