Java IO,BIO、NIO、AIO

操作系统中的 I/O
      以上是 Java 对操作系统的各种 IO 模型的封装,【文件的输入、输出】在文件处理时,其实依赖操作系统层面的 IO 操作实现的。【把磁盘的数据读到内存种】操作系统中的 IO 有 5 种:
阻塞、
非阻塞、【轮询】
异步、
IO复用、【多个进程的 IO 注册到管道上】
信号驱动 IO
 

1.传统的IO流会进行阻塞操作、一个字节一个字节操作
2.NIO提供了一个区域块的 数据映射、 异步的IO流操作
3.通道是 用于获取流中数据 ===>【channel获取的是传统IO流中的数据,读写】
4.缓冲区是 用于保存通道中的数据- ===>【buffer获取的是channel中的数据,读写】

 传统IO操作请看IO操作
IO和NIO的区别
IO:1.面向流(Stream) 2.阻塞IO(Blocking IO)
NIO:1.面向缓冲区 2.非阻塞IO(NO Blocking IO)3. 选择器(Selectors)

(一)引言
IO流是Java中比较难理解的一个知识点,但是IO流在实际的开发场景中经常会使用到,比如Dubbo底层就是NIO进行通讯。本文将介绍Java发展过程中出现的三种IO:BIO、NIO以及AIO,重点介绍NIO。

(二)什么是BIO
BIO即同步阻塞IO,实现模型为一个连接就需要一个线程去处理。这种方式简单来说就是当有客户端来请求服务器时,服务器就会开启一个线程去处理这个请求,即使这个请求不干任何事情,这个线程都一直处于阻塞状态。

BIO模型有很多缺点,最大的缺点就是资源的浪费。想象一下如果QQ使用BIO模型,当有一个人上线时就需要一个线程,即使这个人不聊天,这个线程也一直被占用,那再多的服务器资源都不管用。

同步: 同步就是发起一个调用后,被调用者未处理完请求之前,调用不返回。
异步: 异步就是发起一个调用后,立刻得到被调用者的回应表示已接收到请求,但是被调用者并没有返回结果,此时可以处理其他的请求,被调用者通常依靠事件,回调等机制来通知调用者其返回结果。
同步和异步的区别最大在于 异步调用者不需要等待处理结果,被调用者会通过回调等机制来通知调用者其返回结果。
阻塞: 阻塞就是发起一个请求,调用者一直等待请求结果返回,也就是当前线程会被挂起,无法从事其他任务,只有当条件就绪才能继续。
非阻塞: 非阻塞就是发起一个请求,调用者不用一直等着结果返回,可以先去干其他事情。
 

 BIO (Blocking I/O) 同步阻塞
     服务端创建一个 ServerSocket , 然后就是客户端用一个Socket 去连接服务端的那个 ServerSocket, ServerSocket 接收到了一个的连接请求就创建一个Socket和一个线程去跟那个 Socket 进行通讯。接着客户端和服务端就进行阻塞式的通信,客户端发送一个请求,服务端 Socket 进行处理后返回响应,在响应返回前,客户端那边就阻塞等待,什么事情也做不了。
     这种方式的缺点, 每次一个客户端接入,都需要在服务端创建一个线程来服务这个客户端,这样大量客户端来的时候,就会造成服务端的线程数量可能达到了几千甚至几万,这样就可能会造成服务端过载过高,最后崩溃死掉。

(三)BIO代码实践

我们通过socket模拟BIO的实现逻辑

首先建立Server,建立一个ServerSocket对象,绑定端口,然后等待连接,如果连接成功就新建一个线程去处理连接。

server服务端:两种情况:

1.单线程处理多个客户端

2.多线程处理多个客户端 ,也就是服务端接受到客户端的socket就开启一个线程去处理.

package com.cn.jettech.jettoproimage.controller.imagecontroller01.imagecontroller01.io.bio;


import java.io.IOException;
import java.net.*;

/**
 * BIO即同步阻塞IO,实现模型为一个连接就需要一个线程去处理
 *
 **/
public class BIOServer {
    private static Socket socket = null;
    private static int thread_queue_size = 100;
    private static volatile int i = 0;
    private static int server_port = 8080;
    private static String server_ip = "192.168.0.17";
    public static void main(String[] args) throws  Exception{
        //ServerSocket serverSocket = new ServerSocket(BIOServer.server_port,BIOServer.thread_queue_size,InetAddress.getByName(BIOServer.server_ip));
        ServerSocket serverSocket = new ServerSocket();
        //该选项用来决定如果网络上仍然有数据向旧的ServerSocket传输数据,是否允许新的ServerSocket绑定到与旧的ServerSocket同样的端口上,
        //该选项的默认值与操作系统有关,在某些操作系统中,允许重用端口,而在某些系统中不允许重用端口。
        //当ServerSocket关闭时,如果网络上还有发送到这个serversocket上的数据,这个ServerSocket不会立即释放本地端口,
        //而是等待一段时间,确保接收到了网络上发送过来的延迟数据,然后再释放端口。
        //值得注意的是,public void setReuseAddress(boolean on) throws SocketException必须在ServerSocket还没有绑定到一个本地端口之前使用,
        //否则执行该方法无效。此外,两个公用同一个端口的进程必须都调用serverSocket.setReuseAddress(true)方法,才能使得一个进程关闭ServerSocket之后,
        //另一个进程的ServerSocket还能够立刻重用相同的端口。
        //serverSocket.setReuseAddress(true);
        //SO_RCVBUF 表示 Socket 的用于输入数据的缓冲区的大小. 一般说来, 传输大的连续的数据块(基于HTTP 或 FTP 协议的通信) 可以使用较大的缓冲区,
        //这可以减少传输数据的次数, 提高传输数据的效率. 而对于交互频繁且单次传送数据量比较小的通信方式(Telnet 和 网络游戏), 则应该采用小的缓冲区,
        //确保小批量的数据能及时发送给对方. 这种设定缓冲区大小的原则也同样适用于 Socket 的 SO_SNDBUF 选项.
        //serverSocket.setReceiveBufferSize(10000);
        //SO_TIMEOUT表示ServerSocket的accept()方法等待客户连接的超时时间,以毫秒为单位。如果SO_TIMEOUT的值为0,表示永远不会超时,这是SO_TIMEOUT的默认值。
        //当服务器执行ServerSocket的accept()方法时,如果连接请求队列为空,服务器就会一直等待,直到接收到了客户连接才从accept()方法返回。如果设定了超时时间,
        //那么当服务器等待的时间超过了超时时间,就会抛出SocketTimeoutException,它是InterruptedException的子类。
        //当底层的Socket实现不支持SO_TIMEOUT选项时,这两个方法将抛出SocketException例外。不能将timeout设为负数,
        //否则setSoTimeout方法将抛出IllegalArgumentException例外。
        //serverSocket.setSoTimeout(10000);
        //backlog : 输入连接指示(对连接的请求)的最大队列长度被设置为 backlog 参数。如果队列满时收到连接指示,则拒绝该连接。
        //1. backlog参数必须是大于 0 的正值。如果传递的值等于或小于 0,则假定为默认值。
        //2. 经过测试这个队列是按照FIFO(先进先出)的原则。
        //3. 如果将accept这个函数放在一个循环体中时,backlog参数也不会有什么作用。或者简单的讲运行ServerSocket的这个线程会阻塞时,无论是在accept,还是在read处阻塞,这个backlog参数才生效。
        serverSocket.bind(new InetSocketAddress(BIOServer.server_port),BIOServer.thread_queue_size);
//        System.out.println(serverSocket.isBound() && !serverSocket.isClosed());
//        if(serverSocket.isBound()) {
//            System.out.println(serverSocket.getLocalPort());
//            System.out.println(serverSocket.getInetAddress().getHostAddress());
//        }
        while (true) {
            //等待连接  阻塞
            ++i;
            System.out.println("等待客户端的连接");
            socket = serverSocket.accept();
            System.out.println("服务端已经获取到了客户端你的第"+i+"个socket,连接成功"+socket.getRemoteSocketAddress());
            try {
                Thread.sleep(1000); //thread_queue_size参数是模拟请求的队列池子大小---单线程模式下,这样客户端请求过大服务器不予处理。
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            //System.in.read();
            //Thread thread= new Thread(new MyRun(socket));  //多线程处理客户端
            //thread.start();
        }
    }
}
class MyRun implements  Runnable {
    private Socket socket;
    public MyRun(Socket socket) {
        this.socket = socket;
    }
    public MyRun() {
    }
    public void run() {
        byte[] bytes=new byte[33];
        try {
            System.out.println("服务端等待读数据");
            int length=socket.getInputStream().read(bytes);
            System.out.println("读到客户端传过来的数据的长度是:" +length);
//            System.out.println("服务端每次处理的最大数据是:" +bytes.length);
//            System.out.println("============第一段"+new String(bytes,0,6)+"=============");
            System.out.println("======"+Thread.currentThread().getName()+"======读取整体"+new String(bytes,0,length)+"=============");
        } catch (IOException e) {
            e.printStackTrace();
        }finally {
            try {
                socket.close();
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        }
    }
}

client客户端:属于真正的客户端,因为数多线程模拟的客户端

package com.cn.jettech.jettoproimage.controller.imagecontroller01.imagecontroller01.io.bio;
import java.io.IOException;
import java.net.Socket;
public class BIOClient {
    private static int socket_size = 100;
    private static int server_port = 8080;
    private static String server_ip = "192.168.0.17";
    public static void main(String[] args) throws Exception{
        Socket[] client = new Socket[BIOClient.socket_size];
        for (int i = 0; i < BIOClient.socket_size; i++) {
            final int index = i;
            new Thread(()->{
                try {
                    client[index] = new Socket(BIOClient.server_ip,BIOClient.server_port);
//                    client[index].getOutputStream().write("我是第".getBytes());
//                    client[index].getOutputStream().write(index);
//                    client[index].getOutputStream().write("客户端过来的数据".getBytes());
                    System.out.println("第 " + (index+1) + "客户端连接成功");
                } catch (IOException e) {
                    throw new RuntimeException(e);
                }
            },String.valueOf(i)).start();
        }
    }
}

BIO是阻塞的,如果没有多线程,BIO就需要一直占用CPU,而NIO则是非阻塞IO,NIO在获取连接或者请求时,即使没有取得连接和数据,也不会阻塞程序。NIO的服务器实现模式为一个线程可以处理多个请求(连接)。也就是说BIO服务端多线程也可以处理多个客户端,但是这样服务端线程数量会增多性能会下降。

(四)什么是NIO
BIO是阻塞的,如果没有多线程,BIO就需要一直占用CPU,而NIO则是非阻塞IO,NIO在获取连接或者请求时,即使没有取得连接和数据,也不会阻塞程序。NIO的服务器实现模式为一个线程可以处理多个请求(连接)。

NIO有几个知识点需要掌握,Channel(通道),Buffer(缓冲区), Selector(多路复用选择器)。

Channel既可以用来进行读操作,又可以用来进行写操作。NIO中常用的Channel有FileChannel
、SocketChannel、ServerSocketChannel、DatagramChannel。

Buffer缓冲区用来发送和接受数据。

Selector 一般称为选择器或者多路复用器 。它是Java NIO核心组件中的一个,用于检查一个或多个NIO Channel(通道)的状态是否处于可读、可写。在javaNIO中使用Selector往往是将Channel注册到Selector中。

下面我通过代码的方式模拟javaNIO的运行流程。

(五)NIO代码实践
首先贴上NIO的实践代码:

NIO服务端详细的执行过程是这样的:

1、创建一个ServerSocketChannel和Selector,然后将ServerSocketChannel注册到Selector上

2、Selector通过select方法去轮询监听channel事件,如果有客户端要连接时,监听到连接事件。

3、通过channel方法将socketchannel绑定到ServerSocketChannel上,绑定通过SelectorKey实现。

4、socketchannel注册到Selector上,关心读事件。

5、Selector通过select方法去轮询监听channel事件,当监听到有读事件时,ServerSocketChannel通过绑定的SelectorKey定位到具体的channel,读取里面的数据。


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/50211.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【java的类型数据】——八大类型数据

文章目录 前言字面常量字面常量的分类: 数据类型和变量变量的包装类和范围范围整型变量byteintshortlong 浮点型变量双精度浮点型double单精度浮点型float 字符型变量char布尔型变量 boolean 类型转换自动类型转换&#xff08;隐式&#xff09;强制类型转换&#xff08;显式&am…

Android跨进程传大图思考及实现——附上原理分析

1.抛一个问题 这一天&#xff0c;法海想锻炼小青的定力&#xff0c;由于Bitmap也是一个Parcelable类型的数据&#xff0c;法海想通过Intent给小青传个特别大的图片 intent.putExtra("myBitmap",fhBitmap)如果“法海”(Activity)使用Intent去传递一个大的Bitmap给“…

排序链表——力扣148

文章目录 题目描述法一 自顶向下归并排序法二&#xff09;自底向上归并排序 题目描述 题目的进阶问题要求达到 O(nlogn) 的时间复杂度和 O(1) 的空间复杂度&#xff0c;时间复杂度是 O(nlogn) 的排序算法包括归并排序、堆排序和快速排序&#xff08;快速排序的最差时间复杂度是…

推荐带500创作模型的付费创作V2.1.0独立版系统源码

ChatGPT 付费创作系统 V2.1.0 提供最新的对应版本小程序端&#xff0c;上一版本增加了 PC 端绘画功能&#xff0c; 绘画功能采用其他绘画接口 – 意间 AI&#xff0c;本版新增了百度文心一言接口。 后台一些小细节的优化及一些小 BUG 的处理&#xff0c;前端进行了些小细节优…

【Java面试丨企业场景】常见技术场景

一、单点登录怎么实现的 1. 介绍 单点登录&#xff08;Single Sign On&#xff0c;SSO&#xff09;&#xff1a;只需要登录一次&#xff0c;就可以访问所有信任的应用系统 2. 解决方案 JWT解决单点登录问题 用户访问应用系统&#xff0c;会在网关判断Token是否有效如果Tok…

极简并优雅的在IDEA使用Git远程拉取项目和本地推送项目

连接Git 搜索Git然后将你下载好的Git的文件目录位置给他弄进去就行 本地分支管理 分支管理通常是在IDEA的右下角找到 连接远程仓库 方法1本地项目推送到远程仓库 如果当前项目还没交给Git管理的则按照以下图所示先将项目交给Git管理 然后此时文件都会是红色的&#xff0c;这表…

《向量数据库指南》:向量数据库Pinecone如何集成LangChain (一)

目录 LangChain中的检索增强 建立知识库 欢迎使用Pinecone和LangChain的集成指南。本文档涵盖了将高性能向量数据库Pinecone与基于大型语言模型(LLMs)构建应用程序的框架LangChain集成的步骤。 Pinecone使开发人员能够基于向量相似性搜索构建可扩展的实时推荐和搜索系统…

Meta分析的选题与文献计量分析CiteSpace应用丨R语言Meta分析【数据清洗、精美作图、回归分析、诊断分析、不确定性及贝叶斯应用】

目录 ​专题一、Meta分析的选题与文献计量分析CiteSpace应用 专题二、Meta分析与R语言数据清洗及相关应用 专题三、R语言Meta分析与精美作图 专题四、R语言Meta回归分析 专题五、R语言Meta诊断分析与进阶 专题六、R语言Meta分析的不确定性及贝叶斯应用 专题七、深度拓展…

零信任网络架构与实现技术的研究与思考

目前&#xff0c;国外已有较多有关零信任网络的研究与实践&#xff0c;包括谷歌的 BeyondCorp、BeyondProd&#xff0c;软件定义边界&#xff08;Software Defined Perimeter&#xff0c;SDP&#xff09; 及盖特提出的“持续自适应风险与信任评估”等。国内也有不少安全厂商积极…

Istio网关Gateway 启用TLS

Istio网关Gateway概述 Istio网关Gateway是一个负责处理南北向流量的组件&#xff0c;它通常会暴露服务网格内部的服务&#xff0c;以便外部的请求能够访问到服务网格中的服务。Istio网关Gateway支持多种协议&#xff0c;包括HTTP、HTTPS和GRPC等。 在Istio网关Gateway中&#…

DevOps-Jenkins

Jenkins Jenkins是一个可扩展的持续集成引擎&#xff0c;是一个开源软件项目&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件的持续集成变成可能。 官网 应用场景 场景一 研发人员上传开发好的代码到github代码仓库需要将代码下载nginx服务器部署手动下载再…

C++之poll与epoll总结(一百六十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

优化基于tcp,socket的ftp文件传输程序

原始程序&#xff1a; template_ftp_server_old.py&#xff1a; import socket import json import struct import os import time import pymysql.cursorssoc socket.socket(socket.AF_INET, socket.SOCK_STREAM) HOST 192.168.31.111 PORT 4101 soc.bind((HOST,PORT)) p…

MVC与MVVM模式的区别

一、MVC Model&#xff08;模型&#xff09;&#xff1a;用于处理应用程序数据逻辑&#xff0c;负责在数据库中存取数据。处理数据的crud View&#xff08;视图&#xff09;&#xff1a;处理数据显示的部分。通常视图是依据模型数据创建的。 Controller&#xff08;控制器&…

25.6 matlab里面的10中优化方法介绍—— 遗传算法(matlab程序)

1.简述 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型&#xff0c;是一种通过模拟自然进化过程搜索最优解&#xff08;所找到的解是全局最优解&#xff09;的方法。 参数编码、初始群体的设定…

Generative Diffusion Prior for Unified Image Restoration and Enhancement 论文阅读笔记

这是CVPR2023的一篇用diffusion先验做图像修复和图像增强的论文 之前有一篇工作做了diffusion先验&#xff08;Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song, “Denoising diffusion restoration models,” arXiv preprint arXiv:2201.11793, 2022. 2, 4, 6,…

【万字长文】SpringBoot整合SpringSecurity+JWT+Redis完整教程(提供Gitee源码)

前言&#xff1a;最近在学习SpringSecurity的过程中&#xff0c;参考了很多网上的教程&#xff0c;同时也参考了一些目前主流的开源框架&#xff0c;于是结合自己的思路写了一个SpringBoot整合SpringSecurityJWTRedis完整的项目&#xff0c;从0到1写完感觉还是收获到不少的&…

前端,js , Error in created hook: TypeError ,有bug了

怎么兄弟&#xff0c;遇到bug了&#xff1f;&#xff1f;&#xff1f;你开心吗&#xff0c;哈哈哈哈

论文笔记--Skip-Thought Vectors

论文笔记--Skip-Thought Vectors 1. 文章简介2. 文章概括3 文章重点技术3.1 Skip Thought Vectors3.2 词表拓展 4. 文章亮点5. 原文传送门6. References 1. 文章简介 标题&#xff1a;Skip-Thought Vectors作者&#xff1a;Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Rich…

7.28 作业 QT

手动完成服务器的实现&#xff0c;并具体程序要注释清楚: widget.h: #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器类 #include <QTcpSocket> //客户端类 #include <QMessageBox> //对话框类 #include …