【智能算法】流向算法(FDA)原理及实现

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2021年,H Karami等人受到水流运动规律启发,提出了流向算法(Flow Direction Algorithm, FDA)。

2.算法原理

2.1算法思想

FDA受到了流入排水池的水流的启发,模拟了水流朝向排水池最低高度出口的方向流动 (水往低处流~)。首先创建一个初始种群在排水池即问题的搜索空间中,然后考虑了邻近水流及其坡度对水流的影响,最后使水流流向海拔较低的位置,也就是排水池的最低海拔出口点(适应度值度量)。
在这里插入图片描述

2.2算法过程

创建水流领域

FDA 假设每个水流附近存在 β 个邻域,则第i个水流的第j个邻居位置为:
N ( j ) = F ( i ) + R N × Δ (1) N\left(j\right)=F\left(i\right)+R_{\mathbb{N}}\times\Delta \tag{1} N(j)=F(i)+RN×Δ(1)
其中,RN是均值为0,标准差为1的正态分布随机数;Δ 是用来控制算法搜索空间大小的控制参数,其值越小算法搜索范围越小,反之搜索空间越大.Δ的值从一个较大值线性减小到较小值,并朝向随机位置以增加多样性,表述为:
Δ = [ R × X r a n d − R × F ( i ) ] × ∥ X b e s t − F ( i ) ∥ × W (2) \begin{aligned}\Delta&=\bigl[R\times X_{\mathrm{rand}}-R\times F(i)\bigr]\times\left\|X_{\mathrm{best}}-F(i)\right\|\times W\end{aligned}\tag{2} Δ=[R×XrandR×F(i)]×XbestF(i)×W(2)
其中,Xrand为随机水流位置,Xbest为当代最优水流位置,W为非线性权重:
W = ( 1 − τ τ max ⁡ ) 2 × R N × ( R u × τ τ max ⁡ ) × R u (3) W=\left(1-\frac{\tau}{\tau_{\max}}\right)^{2\times R_{N}}\times\left(R_{\mathrm{u}}\times\frac{\tau}{\tau_{\max}}\right)\times R_{\mathrm{u}}\tag{3} W=(1τmaxτ)2×RN×(Ru×τmaxτ)×Ru(3)
其中,τ 和 τmax分别为当前迭代次数和最大迭代次数,Ru为均匀分布的随机向量。
更新水流位置
FDA算法中水流流向海拔最低的方向,若最优邻居N(k)的适应度fN(k)小于当前水流的适应度fF(i),则当前水流流向该邻居,此时新的水流位置为:
F n e w ( i ) = F ( i ) + v F ( i ) − N ( k ) ∥ F ( i ) − N ( k ) ∥ (4) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+v\frac{\boldsymbol{F}(i)-\boldsymbol{N}(k)}{\left\Vert\boldsymbol{F}(i)-\boldsymbol{N}(k)\right\Vert}\tag{4} Fnew(i)=F(i)+vF(i)N(k)F(i)N(k)(4)
其中,k为最优邻居的序号;v为水流速度,与坡度直接相关:
v = R N × S 0 ( i , k , D ) (5) v=R_\text{N}\times S_0(i,k,D)\tag{5} v=RN×S0(i,k,D)(5)
其中,S0(i,k,D)为最优邻居N(k)和水流F(i)位置之间的斜率为:
S 0 ( i , k , D ) = f F ( i ) − f N ( k ) ∥ F ( i , d ) − N ( k , d ) ∥ (6) S_0(i,k,D)=\frac{f_{\boldsymbol{F}(i)}-f_{\boldsymbol{N}(k)}}{\left\|F(i,d)-N(k,d)\right\|}\tag{6} S0(i,k,D)=F(i,d)N(k,d)fF(i)fN(k)(6)
如果随机水流的适应度优于当前水流的适应度,那么当前水流将沿着随机水流的方向流动。
F n e w ( i ) = F ( i ) + R N × [ F ( r ) − F ( i ) ] (7) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+R_{\mathrm{N}}\times\left[\boldsymbol{F}(r)-\boldsymbol{F}(i)\right]\tag{7} Fnew(i)=F(i)+RN×[F(r)F(i)](7)
如果当前水流的适应度优于其最优邻居的适应度,根据适应度值来决定当前水流是沿着该随机水流的方向移动,还是沿着最优水流的方向移动。
F n e w ( i ) = F ( i ) + 2 R N × [ X b e s t − F ( i ) ] (8) \boldsymbol{F}_\mathrm{new}(i)=\boldsymbol{F}(i)+2R_\mathrm{N}\times\left[\boldsymbol{X}_\mathrm{best}-\boldsymbol{F}(i)\right]\tag{8} Fnew(i)=F(i)+2RN×[XbestF(i)](8)

流程图
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Karami H, Anaraki M V, Farzin S, et al. Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems[J]. Computers & Industrial Engineering, 2021, 156: 107224.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/495371.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins用户角色权限管理

Jenkins作为一款强大的自动化构建与持续集成工具,用户角色权限管理是其功能体系中不可或缺的一环。有效的权限管理能确保项目的安全稳定,避免敏感信息泄露。 1、安装插件:Role-based Authorization Strategy 系统管理 > 插件管理 > 可…

第十一章:位运算符与位运算

文章目录 第十一章&#xff1a;位运算符与位运算1.按位与运算&#xff1a;&2.按位或运算&#xff1a;|3.按位异或运算&#xff1a;^4.取反运算符&#xff1a;~5.左移运算符&#xff1a;<<6.右移运算符&#xff1a;>>总结 第十一章&#xff1a;位运算符与位运算…

StringRedisTemplate与RedisTemplate详解【序列化的方式不同】

spring 封装了 RedisTemplate 对象来进行对redis的各种操作&#xff0c;它支持所有的 redis 原生的 api。在RedisTemplate中提供了几个常用的接口方法的使用&#xff0c;分别是: private ValueOperations<K, V> valueOps; private HashOperations<K, V> hashOps; …

回文数个数-第12届蓝桥杯选拔赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第43讲。 回文数个数&#…

Unity 学习日记 12.小球撞击冰块游戏

目录 1.准备场景 2.让小球动起来 3.用鼠标把小球甩出去 4.加入鼠标点击小球的判断 5.小球与冰块的碰撞测试 6.撞击后销毁冰块 ​编辑 7.显示游戏计时 8.显示扔球次数 9.显示剩余冰块个数 10.游戏结束 11.完整代码 下载源码 UnityPackage 最终效果&#xff1a; 1.准…

【氮化镓】位错对氮化镓(GaN)电子能量损失谱(EEL)的影响

本文献《Influence of dislocations on electron energy-loss spectra in gallium nitride》由C. J. Fall等人撰写&#xff0c;发表于2002年。研究团队通过第一性原理计算&#xff0c;探讨了位错对氮化镓&#xff08;GaN&#xff09;电子能量损失谱&#xff08;EEL&#xff09;…

八大排序之堆排序

堆排序算法思想&#xff1a; 堆排序是利用二叉树的原理&#xff0c;模拟二叉树将所求的数据放入存放树中&#xff0c;先将所有数据按照大根堆排列&#xff0c;排列之后再依次的给树按从小到大排列. 例如 2 5 44 21 11 6 1 9 我们将数据按照这样的二叉树的形式列举出来&#…

FPGA时钟资源详解(1)——时钟Buffer的选择

FPGA时钟系列文章总览&#xff1a;FPGA原理与结构&#xff08;14&#xff09;——时钟资源https://ztzhang.blog.csdn.net/article/details/132307564 目录 一、概述 二、时钟Buffer的选择 2.1 BUFG 2.2 BUFR 和 BUFIO 2.2.1 源同步接口的支持 2.2.2 扩展时钟域…

DREAM: A Dynamic Scheduler for Dynamic Real-time Multi-model ML Workloads——论文泛读

ASPLOS 2024 Paper 论文阅读笔记整理 问题 新兴的实时多模型ML&#xff08;RTMM&#xff09;工作负载&#xff0c;如AR/VR和无人机控制&#xff0c;涉及各种粒度的动态行为&#xff1a;任务、模型和模型中的层。这种动态行为给ML系统中的系统软件带来了新的挑战&#xff0c;与…

深度学习中不同学习率调整策略

1、StepLR 功能&#xff1a;固定等间隔调整学习率 主要参数&#xff1a; step_size:调整间隔数 gamma&#xff1a;调整系数 调整方式&#xff1a; l r l r ∗ g a m m a lrlr\ast gamma lrlr∗gamma 2、MultiStepLR 功能&#xff1a;按给定间隔调整学习率 主要参数&#xf…

Linux——磁盘与文件系统管理

目录 磁盘分区的表示 硬盘分区 分区类型 确认系统中的磁盘设备——fdisk 规划硬盘中的分区——fdisk 文件系统 文件系统类型&#xff1a; 在分区中创建文件系统——mkfs&#xff0c;mkswap 挂载文件系统 mount命令 umount命令 查看分区挂载情况 设置启动载入&…

负荷频率控制LFC,自抗扰ADRC控制,麻雀SSA算法优化自抗扰参数,两区域二次调频simulink/matlab

红色曲线为优化结果&#xff0c;蓝色曲线为没有自抗扰和没有优化的结果&#xff01;

Mac系统中使用VSCode安装C#开发环境进行编译调试

VSCode安装插件 C#c# Dev Kit 安装Mac版本 .net .net下载地址 查看安装结果 dotnet --list-sdksdotnet --info配置环境变量 open -e ~/.bash_profile添加如下内容 export DOTNET_ROOT/usr/local/share/dotnet export PATH$PATH:$DOTNET_ROOT终端重新加载配置文件 sourc…

原子激光器(原子激射器)可发射相干原子束 目前仍处于技术研究阶段

原子激光器&#xff08;原子激射器&#xff09;可发射相干原子束 目前仍处于技术研究阶段 原子激光器&#xff0c;也称为原子激射器&#xff0c;是一种能够产生原子激光的器件。原子激光由粒子组成&#xff0c;拥有频率和波长&#xff0c;原子激光器受激发射电磁波&#xff0c;…

顺丰接口接入-主要处理下单接口上电子面单上传问题

概述 最近接到一个需求&#xff0c;需要和顺丰接口对接。由于是第一次对接&#xff0c;就需要把所有的流程全部走一遍&#xff0c;从 注册到 关联API 以及代码测试&#xff0c;电子面单审核&#xff0c;上线&#xff0c;下面就分开来说明把。本来是想着偷懒来着&#xff0c;作…

Days 35 ElfBoard板对Java的支持

Java作为一种功能强大且广泛应用的编程语言&#xff0c;具有广泛的适应性和实用性。在ELF 1开发板上集成Java支持&#xff0c;无疑将赋予嵌入式开发者更广阔的选择空间&#xff0c;今天就为各位小伙伴详细解析如何在ELF 1开发板上成功部署和运行Java环境。 1.拷贝两个压缩包到E…

FME学习之旅---day14

我们付出一些成本&#xff0c;时间的或者其他&#xff0c;最终总能收获一些什么。 【FME-HOW-TO系列】13 通过重新采样修改栅格像元大小 除了使用RasterResampler转换器进行重采样的操作外&#xff0c;还需要了解不同的插值方法&#xff0c;各方法大概的不同。 可以参考ArcG…

计算机网络(二)物理层

物理层 一、通信基础1.奈氏准则、香农定理2.编码与调制3.电路交换、报文交换、分组交换 二、 传输介质、设备1.导向性传输介质&#xff1a;1.1双绞线1.2 同轴电缆1.3光纤 2.非导向性传输介质&#xff1a; 一、通信基础 信道带宽&#xff1a;信道能通过的最高频率和最低频率之差…

学浪视频提取

经过调查,学浪这个学习平台越来越多人使用了,但是学浪视频官方没有提供下载按钮,为了让这些人能够随时随地的观看视频,于是我钻研学浪视频的下载,终于研究出来了并且做成软件批量版 下面是学浪视频提取的软件,有需要的自己下载一下 链接&#xff1a;https://pan.baidu.com/s/…

Chrome之解决:浏览器插件不能使用问题(十三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…