【氮化镓】位错对氮化镓(GaN)电子能量损失谱(EEL)的影响

本文献《Influence of dislocations on electron energy-loss spectra in gallium nitride》由C. J. Fall等人撰写,发表于2002年。研究团队通过第一性原理计算,探讨了位错对氮化镓(GaN)电子能量损失谱(EEL)的影响。研究发现,未装饰的全核心位错导致低损耗EEL光谱中低于块体起始能量的吸收。此外,边缘位错附近的氮原子的静电势变化显著,对核心损耗光谱的简单解释提出了质疑。研究还模拟了不同电荷状态下GaN边缘和螺旋位错的EEL光谱,并与实验数据进行了比较,发现理论结果与实验光谱一致。

研究背景: 氮化镓作为一种重要的宽禁带半导体材料,在光电子和微电子领域有着广泛的应用。位错作为晶体中的缺陷,对材料的电子结构和性能有着显著影响。因此,理解位错对GaN电子能量损失谱的影响对于提高材料性能具有重要意义。

研究目的: 本研究旨在通过第一性原理计算,探究GaN中边缘和螺旋位错对EEL光谱的影响,以及这些位错导致的能隙态对材料电子性质的影响。

研究方法: 研究团队采用了基于密度泛函理论的局部密度近似(LDA)和平面波赝势方法进行自洽的从头算模拟。通过构建包含位错的超胞模型,计算了GaN的低损耗和核心激发EEL光谱。同时,研究了不同电荷状态下位错的电子结构。

以下是具体的计算方法细节总结:

  1. 计算设置:

    • 作者使用了局部密度近似(LDA)作为交换相关近似,并利用AIMPRO代码进行从头算模拟。
    • 为了描述离子核心,使用了赝势方法,并包含了非线性核心修正以处理镓的3d电子。
    • 电荷密度在平面波中展开,截止能量为300 Ry,而波函数则使用针对块体系统优化的局域的s、p和d原子中心高斯轨道表示。
    • 结构优化使用每个原子上的dppp基组进行,而EEL光谱的计算则使用Ga的Al的dddd基组和N的dppp基组。
    • 使用Monkhorst-Pack k点网格进行布里渊区积分。
  2. 位错模型构建:

    • 作者考虑了两种方法来描述位错: a. 在144原子超胞中插入一对具有相反Burgers矢量的边缘位错。 b. 在120原子超胞-团簇混合中包含单个边缘位错,其中表面悬挂键通过额外的分数电荷氢原子饱和。
    • 对于螺旋位错,使用方法b进行研究,包含108个Ga和N原子。
    • 这两种技术都描述了无限长度的“0001”位错,并且在“0001”方向上保持了与c轴的体值周期性。
  3. EEL光谱理论计算:

    • 低损耗EEL光谱由价带和导带之间的电子跃迁产生,涉及能隙态的跃迁可以探测缺陷。
    • 实验信号代表了介电函数虚部的对角元素,通过在偶极近似下计算得到。
    • 通过Kramers-Kronig变换获得介电函数的实部,并且在计算中使用了多项式扩展方案,以避免洛伦兹函数在能隙区域低能量处的长尾效应。
  4. 核心激发EEL光谱计算:

    • 核心激发EEL光谱由N 1s核心电子向空的能隙态或导带态的电子跃迁产生。
    • 为了计算核心激发EEL光谱,作者们考虑了位错附近的原子键变化引起的局部电势变化,这些变化会影响核心能级的能源。
  5. 计算参数:

    • 计算使用了1024个MP k点进行布里渊区积分,并且在超胞中使用了类似的k点密度。
    • 为了模拟实验中的EEL光谱,作者们假设了一个电子束探针直径为10-15 Å,位于位错核心中心。

研究结果与机理解释:

研究发现,全核心位错导致在低损耗EEL光谱中出现低于块体起始能量的吸收峰。边缘位错附近的氮原子静电势变化可达1伏特,这可能会影响核心损耗光谱的解释。理论计算的EEL光谱与实验数据吻合良好,表明模型能够有效地描述位错对电子结构的影响。

  1. 低损耗EEL光谱与实验数据的一致性: 研究计算得到的低损耗EEL光谱与实验数据在峰值和肩部上有很好的定性一致性,这验证了所使用的计算方法和参数的有效性。

  2. 位错导致的能隙态: 研究发现,未装饰的全核心位错在GaN的能隙中引入了局域态,这些态导致了低于块体起始能量的吸收。这意味着位错的存在会影响材料的电子性质。

  3. 位错附近的静电势变化: 边缘位错附近的氮原子的静电势变化显著,变化量可达1伏特,这表明位错附近的电子环境与体材料有显著不同,对电子能量损失谱的解释提出了挑战。

  4. 不同电荷状态下位错的电子结构: 研究还考虑了不同电荷状态下(中性、带电)的边缘和螺旋位错的电子结构。发现带电位错会改变位错核心的原子结构,从而影响其电子性质。

  5. 位错对EEL光谱的影响: 通过模拟位错核心的EEL光谱,研究发现位错会导致在导带边缘以下的额外吸收。此外,位错的存在还会导致核心激发EEL光谱的变化,这些变化与位错附近的原子结构和电荷分布有关。

机理解释:

  1. 能隙态的形成: 位错的存在导致了晶体结构的畸变,这种畸变在位错核心附近形成了能隙态。这些态是由于位错引起的局部原子排列变化和未饱和键的结果,它们可以捕获电荷并影响材料的电子输运性质。

  2. 静电势的变化: 位错附近的原子受到不同的机械应力,这会导致局部电场的变化。这种电场变化会影响原子的核心能级,从而影响核心激发EEL光谱。

  3. 位错电荷状态的影响: 位错的电荷状态会影响其核心的原子结构和电子分布。带电位错会通过电子-空穴对的形成来稳定其结构,这会导致位错核心的能隙态进一步改变。

  4. EEL光谱的敏感性: EEL光谱是一种非常敏感的技术,可以用来探测材料中的微小变化。位错引起的电子结构变化会直接反映在EEL光谱中,因此,通过分析EEL光谱可以揭示位错的性质和影响。

研究的创新点和亮点:

  1. 本研究首次系统地模拟了GaN中边缘和螺旋位错的EEL光谱,为理解位错对电子性质的影响提供了新的视角。
  2. 通过比较不同电荷状态下位错的电子结构,揭示了位错电荷对能隙态的调控作用。
  3. 研究提出了一种新的EEL光谱解释方法,考虑了位错引起的电场变化对核心能级的移动,为实验数据分析提供了新的理论基础。

研究意义与应用前景:

本研究对GaN材料中的位错缺陷进行了深入的理论研究,有助于指导实验上对位错进行控制和改良,从而优化材料的电子性能。这对于提高GaN基器件的性能,如高效率的发光二极管和高频率的电子器件,具有重要的实际意义。此外,研究方法和理论模型可推广应用于其他半导体材料的位错研究,具有广泛的应用前景。

图 1: 理论能带结构 。展示了计算得到的氮化镓(GaN)和氮化铝(AlN)的能带结构。图中分别用虚线和实线表示了将镓的3d电子作为价带或核心电子时的能带结构。通过将计算得到的带隙与实验值对齐,可以看出理论模型与实验观测的一致性。

图 2: 低损耗EEL光谱比较。比较了实验数据(十字标记)和理论计算(线条)得到的块体GaN和AlN的低损耗EEL光谱。图中展示了电子束在垂直于c轴的x,y平面内(实线)和平行于c轴的z方向(虚线)的EEL光谱。通过这种比较,作者验证了理论模型的准确性,并为后续研究位错对EEL光谱影响提供了基础。

图 3: 中性GaN边缘位错的弛豫结构 。图的上半部分展示了使用两种不同超胞技术得到的中性GaN边缘位错的弛豫结构。图中的白色和灰色分别代表氮和镓原子。图中还标记了核心原子列的索引。下半部分展示了相应的能带结构,其中顶部和底部半能隙态分别表示为空态和满态。

图 4: GaN边缘位错的局域态波函数 这张图展示了GaN边缘位错中局域态的波函数等值面。图中左右两个面板分别展示了较低和较高能级的局域态。白色和黑色分别代表氮和镓原子,图中的等值面仅突出显示了波函数的中心峰。

图 5: 带电GaN边缘位错的能带结构 这张图展示了带有一个额外电子的GaN边缘位错的能带结构。这是通过在带有位错的超胞中添加电子并放松结构得到的。图中的实线将满态和空态分开。

图 6: 中性GaN螺旋位错的结构 图的左右两列分别展示了两种中性“0001”螺旋位错的模型:全核心结构(a)和镓核心结构(b)。顶部面板展示了在(12¯10)平面上的投影结构,中间面板展示了在“0001”平面上的投影结构,下半部分展示了相应的能带结构。

图 7: 中性GaN边缘位错的EEL光谱 这张图比较了包含中性GaN边缘位错的区域(线条)和块体GaN(符号)的计算EEL光谱。结果展示了电子束沿x, y和z方向的光谱,图中还考虑了超胞中的真空区域。

图 8: 带电GaN边缘位错的EEL光谱 这张图比较了包含带电GaN边缘位错的区域(线条)和块体GaN(符号)的计算EEL光谱。图中展示了在带电状态下位错结构放松后的光谱。

图 9: 中性GaN螺旋位错的EEL光谱 这张图展示了包含中性GaN螺旋位错的区域(线条)和块体GaN(符号)的计算EEL光谱。图中考虑了全核心结构和镓核心结构,并且展示了电子束沿x, y和z方向的光谱。

图 10: N核心能级在GaN边缘位错附近的电势变化 这张图展示了中性GaN边缘位错附近氮原子核心能级的电势变化。图中的势能值相对于超胞中所有氮原子的平均势能给出。

图 11: N K-edge核心激发EEL光谱 这张图展示了GaN边缘位错处的N K-edge核心激发EEL光谱(粗线),与块体区域的光谱(细线)进行了比较。能量标尺参照价带顶部设置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/495364.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

八大排序之堆排序

堆排序算法思想: 堆排序是利用二叉树的原理,模拟二叉树将所求的数据放入存放树中,先将所有数据按照大根堆排列,排列之后再依次的给树按从小到大排列. 例如 2 5 44 21 11 6 1 9 我们将数据按照这样的二叉树的形式列举出来&#…

FPGA时钟资源详解(1)——时钟Buffer的选择

FPGA时钟系列文章总览:FPGA原理与结构(14)——时钟资源https://ztzhang.blog.csdn.net/article/details/132307564 目录 一、概述 二、时钟Buffer的选择 2.1 BUFG 2.2 BUFR 和 BUFIO 2.2.1 源同步接口的支持 2.2.2 扩展时钟域…

DREAM: A Dynamic Scheduler for Dynamic Real-time Multi-model ML Workloads——论文泛读

ASPLOS 2024 Paper 论文阅读笔记整理 问题 新兴的实时多模型ML(RTMM)工作负载,如AR/VR和无人机控制,涉及各种粒度的动态行为:任务、模型和模型中的层。这种动态行为给ML系统中的系统软件带来了新的挑战,与…

深度学习中不同学习率调整策略

1、StepLR 功能:固定等间隔调整学习率 主要参数: step_size:调整间隔数 gamma:调整系数 调整方式: l r l r ∗ g a m m a lrlr\ast gamma lrlr∗gamma 2、MultiStepLR 功能:按给定间隔调整学习率 主要参数&#xf…

Linux——磁盘与文件系统管理

目录 磁盘分区的表示 硬盘分区 分区类型 确认系统中的磁盘设备——fdisk 规划硬盘中的分区——fdisk 文件系统 文件系统类型: 在分区中创建文件系统——mkfs,mkswap 挂载文件系统 mount命令 umount命令 查看分区挂载情况 设置启动载入&…

负荷频率控制LFC,自抗扰ADRC控制,麻雀SSA算法优化自抗扰参数,两区域二次调频simulink/matlab

红色曲线为优化结果,蓝色曲线为没有自抗扰和没有优化的结果!

Mac系统中使用VSCode安装C#开发环境进行编译调试

VSCode安装插件 C#c# Dev Kit 安装Mac版本 .net .net下载地址 查看安装结果 dotnet --list-sdksdotnet --info配置环境变量 open -e ~/.bash_profile添加如下内容 export DOTNET_ROOT/usr/local/share/dotnet export PATH$PATH:$DOTNET_ROOT终端重新加载配置文件 sourc…

原子激光器(原子激射器)可发射相干原子束 目前仍处于技术研究阶段

原子激光器(原子激射器)可发射相干原子束 目前仍处于技术研究阶段 原子激光器,也称为原子激射器,是一种能够产生原子激光的器件。原子激光由粒子组成,拥有频率和波长,原子激光器受激发射电磁波,…

顺丰接口接入-主要处理下单接口上电子面单上传问题

概述 最近接到一个需求,需要和顺丰接口对接。由于是第一次对接,就需要把所有的流程全部走一遍,从 注册到 关联API 以及代码测试,电子面单审核,上线,下面就分开来说明把。本来是想着偷懒来着,作…

Days 35 ElfBoard板对Java的支持

Java作为一种功能强大且广泛应用的编程语言,具有广泛的适应性和实用性。在ELF 1开发板上集成Java支持,无疑将赋予嵌入式开发者更广阔的选择空间,今天就为各位小伙伴详细解析如何在ELF 1开发板上成功部署和运行Java环境。 1.拷贝两个压缩包到E…

FME学习之旅---day14

我们付出一些成本,时间的或者其他,最终总能收获一些什么。 【FME-HOW-TO系列】13 通过重新采样修改栅格像元大小 除了使用RasterResampler转换器进行重采样的操作外,还需要了解不同的插值方法,各方法大概的不同。 可以参考ArcG…

计算机网络(二)物理层

物理层 一、通信基础1.奈氏准则、香农定理2.编码与调制3.电路交换、报文交换、分组交换 二、 传输介质、设备1.导向性传输介质:1.1双绞线1.2 同轴电缆1.3光纤 2.非导向性传输介质: 一、通信基础 信道带宽:信道能通过的最高频率和最低频率之差…

学浪视频提取

经过调查,学浪这个学习平台越来越多人使用了,但是学浪视频官方没有提供下载按钮,为了让这些人能够随时随地的观看视频,于是我钻研学浪视频的下载,终于研究出来了并且做成软件批量版 下面是学浪视频提取的软件,有需要的自己下载一下 链接:https://pan.baidu.com/s/…

Chrome之解决:浏览器插件不能使用问题(十三)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

[flask]http请求//获取请求头信息+客户端信息

在网站中查询请求头信息,可以通过以下操作进行 右键然后选择检查 进入改页面后选择文档,刷新一下页面就好了 获取所有的请求头信息 print(request.headers, type(request.headers)) 在flask模块中,使用上面的输出函数就可以查看到有关于请求…

软考高级架构师:云原生架构概念和例题

作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

企业计算机服务器中了mkp勒索病毒怎么办,mkp勒索病毒解密流程步骤

在网络技术飞速发展的今天,越来越多的企业走向了数字化办公模式,网络为企业的生产运营提高了效率,为企业带来了极大便利,但网络是一把双刃剑,在为人们提供便利的同时也会带来数据安全问题,网络数据安全一直…

There is no getter for property named ‘deleted‘

实体类在继承BaseEntity的时候,由于没填写deleted参数名导致mybatis报错 这时候要么改application.yml里的mybatis参数👇 要么就将BaseEntity基类的delete上加个existfalse👇(推荐)

【单例模式】—— C++设计模式【附百度Apollo单例模式详细解读】

参考资料: (1)单例模式—— 代码随想录 (2)我给面试官讲解了单例模式后,他对我竖起了大拇指! (3)C 单例模式详解 (4)单例模式之C实现,…

ssm 房屋销售管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 ssm 房屋销售管理系统是一套完善的信息系统,结合springMVC框架完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库,系统主要采用B/S模…