2014年认证杯SPSSPRO杯数学建模A题(第二阶段)轮胎的花纹全过程文档及程序

2014年认证杯SPSSPRO杯数学建模

A题 轮胎的花纹

原题再现:

  轮胎被广泛使用在多种陆地交通工具上。根据性能的需要,轮胎表面常会加工出不同形状的花纹。在设计轮胎时,往往要针对其使用环境,设计出相应的花纹形状。
  第二阶段问题: 轮胎花纹的形状对轮胎的性能有着可观的影响。推出一款新的轮胎时,往往也要对花纹形状进行认真的设计和优化。请你建立合理的数学模型,当给定车辆情况、路面条件和使用需求时,设计出合适的轮胎花纹。

整体求解过程概述(摘要)

  本文针对轮胎花纹的设计建立了一个多目标规划的模型。通过轮胎花纹对于轮胎性能的影响,我们将所影响轮胎的性能转化为六项可见的指标(承载性能、防滑性能、牵引性能、减噪性能、耐磨性能),并以这六项指标来建立多目标规划的模型,并用 TOPSIS分析法来得到最终的最优解。对于如何设计出轮胎花纹,我们可将其分解为以下几个部分来求解影响花纹设计的几个参数,最终得到轮胎花纹的设计方案。
  第一部分:我们将驾车者对于轮胎使用需求分为三类:车辆情况、路面条件、行车条件。将这三类需求的每种情况所对应的轮胎性能的要求进行量化,并用矩阵表示。同时,通过权值分析,将给定车辆情况、路面条件、行车条件后对轮胎性能的要求表示出来,并用储存在目标向量。
  第二部分:结合文献资料,我们总结出 3 个轮胎花纹设计要素(轮胎花纹走向、沟槽比、沟槽深度),并且将花纹的设计因素对轮胎性能的影响进行评价,最终进行量化。通过引入参数θ (横纹倾斜度), x (横纹所占总花纹面积比),b (沟槽比),c(沟槽深度),然后由目标向量来建立一个非线性规划模型,再对其进行优化,将非线性规划
转化为图中寻求最优路径的问题。
  第三部分:在第二部分中寻找到了所有可行路径后,为了寻求在多个目标均最优的条件下最优解,通过 TOPSIS 分析法,对所有可行路径进行从优到劣的排列,得到所需求的最优路径,从而也确定了花纹的设计方案。

问题分析:

  在解决上述三个问题之前,我们首先确定对轮胎的性能评价分类:承载性能、防滑性能、牵引性能、减噪性能、缓冲性能。耐磨性能,这六项性能基本包括了轮胎能力涵盖的范围。
  针对问题 1,不同消费者会给出不同的车辆情况、路面条件、使用需求。以路面条件为例,就可以划分为沙地、碎石地、山地、雨雪地、沼泽地、高速公路、沥青路面、水泥路面,这样的分类方式过于繁杂,处理数据过程中很容易出现纰漏。如果仅依靠几个特殊的条件得到的花纹组合那么将不具有解决问题的通用性、很难体现数学建模的实际意义。我们要做的便是通过资料的收集,将消费者对于车辆情况、路面条件、使用需求的约束条件进行归纳分析,将其分为三大类,每个大类选取典型的影响因子,将这些典型的影响因子量化,这样做即达到了简化数学模型的目的,又不会丢失过多的影响因素,影响文章的准确性。
  针对问题 2,通过对第一阶段问题的研究,我们得到了轮胎花纹的性能特征、影响因素,但这些结论大部分是定性结论,如果想实现给定条件下设计出合适的花纹,必须将花纹设计因素量化成性能评分,通过分数评定得到给定条件下的花纹组合。通过查询一系列资料,我们将花纹的设计因素归纳为轮胎花纹走向、沟槽比、沟槽深度。将这三个设计因素与轮胎的六项性能建立分值联系,达到量化的效果。其中在花纹走向的分析上,我们将横纵向花纹根据其在整体花纹组合中的贡献度进行复合,得到一个比较完善的花纹走向评分模型;沟槽比、沟槽深度则通过资料介绍、测量得到合理的区间范围,引入量化模型。
  针对问题 3,通过前两个问题已经分别得到了花纹性能评价的量化评分指标,实际需求条件对于性能的量化评分指标,通过某一给定的实际需求指标,计算出能够满足该需求的轮胎花纹所有组合,最后通过多目标规划等数学建模方法,减小可行域,得到相应的可行解,再通过对于实际问题的分析得到轮胎花纹设计的最优化解决方案,完成轮胎花纹设计方案。

模型假设:

  1.假设轮胎使用的材质相同;
  2.假设轮胎的半径以及胎壁厚度相同;
  3.假设轮胎花纹性质仅由花纹走向,沟槽比,沟深决定。

论文缩略图:

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function [routes,combinc,all]=essential(theta,x,a,b,c,target)
%Tranverse all the combinations of elements in a, b, c, caclulate weight of routes connected
to a, b, c.
combin=[];routes=[];routes1=[];combinc=[];
all=[];
for i=1:5
for j=1:6
extent(i,j)=a(1,j)*cos(theta(i))+a(2,j)*sin(theta(i));
end
end
for i=1:6
extent(6,i)=a(2,i);
end
for k=1:5

for i=1:5
for j=1:6
combin1(i,j)=x(k)*extent(i,j)+(1-x(k))*extent(6,j);
end
end
combin=[combin;combin1];
end
for i=1:25
for j=1:4
combinb(j,:)=combin(i,:)+b(j,:);
for k=1:4
combinc1(k,:)=combinb(j,:)+c(k,:);
flag=0;
for m=1:6
if combinc1(k,m)-target(m)<0
flag=1;
continue;
end
end
if flag==0;
routes1=[i,j,k];
routes=[routes;routes1];
combinc=[combinc;combinc1(k,:)];
end
end
all=[all;combinc1];
end
end
(2)Topsis 法:将原始的组合信息 combinc 转换成规范矩阵
function norm_matrix=create_norm(combinc)
% combinc - Oringinal Data
[m,n]=size(combinc);
for j=1:n
norm_matrix(:,j)=combinc(:,j)/norm(combinc(:,j));
end
(3)将整合路径分布成原始的组合路径,即花纹设计方案的组合
function rou=translaterou(routes,theta,x,bb,cc)
[m,n]=size(routes);
rou=[];rou_rest=[];
for i=1:m
if routes(i,1)<5
o=routes(i,1);
else
o=fix(routes(i,1)/5);
end
p=mod(routes(i,1),5);
if p==0
p=5;
end
rou1=[theta(o),x(p)];
rou=[rou;rou1];
end
for i=1:m
rou2=[bb(routes(i,2)),cc(routes(i,3))];
rou_rest=[rou_rest;rou2];
end
rou=[rou,rou_rest];
(4)Topsis 法:取最优可行解
function [sf,index]=topsis(weightednorm)
[m,n]=size(weightednorm);
c_positive=max(weightednorm);
c_negetive=min(weightednorm);
for i=1:m
s_positive(i)=norm(weightednorm(i,:)-c_positive);
s_negetive(i)=norm(weightednorm(i,:)-c_negetive);
end
figure=s_negetive./(s_negetive+s_positive);
[sf,index]=sort(figure,'descend');
(5)根据车辆类型、道路状况、使用需求组合加权得出指标矩阵
function [all_target,target]=allt(car,conditions,needs)
car=0.4*car;
conditions=0.2*conditions;
needs=0.4*needs;
part=[];all_target=[];index0=[];index=[];
for i=1:5
for j=1:4
part1(j,:)=car(i,:)+conditions(j,:);
index1(j,:)=[i,j];
end
part=[part;part1];
index0=[index0;index1];
end
for i=1:20
for j=1:4
part2(j,:)=part(i,:)+needs(j,:);
index2(j,:)=[index0(i,:),j];
end
all_target=[all_target;part2];
index=[index;index2];
end
target=3*all_target;
all_target=[target,index];
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/495292.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习语义分割篇——DeepLabV1原理详解篇

&#x1f34a;作者简介&#xff1a;秃头小苏&#xff0c;致力于用最通俗的语言描述问题 &#x1f34a;专栏推荐&#xff1a;深度学习网络原理与实战 &#x1f34a;近期目标&#xff1a;写好专栏的每一篇文章 &#x1f34a;支持小苏&#xff1a;点赞&#x1f44d;&#x1f3fc;、…

UMEDITOR – 支持WORD上传的富文本编辑器

1.下载代码 https://gitee.com/xproer/zyoffice-umeditor1x 2.引入组件 3.配置接口 效果

使用yolov9来实现人体姿态识别估计(定位图像或视频中人体的关键部位)教程+代码

yolov9人体姿态识别&#xff1a; 相较于之前的YOLO版本&#xff0c;YOLOv9可能会进一步提升处理速度和精度&#xff0c;特别是在姿态估计场景中&#xff0c;通过改进网络结构、利用更高效的特征提取器以及优化损失函数等手段来提升对复杂人体姿态变化的捕捉能力。由于YOLOv9的…

出口落叶就能获取暴利,他却要断了这条财路!学会人生算法重启装置应用!——早读(逆天打工人爬取热门微信文章解读)

重启装置的应用&#xff0c;你学会了吗&#xff1f; 引言Python 代码第一篇 人民日报 出口落叶就能获取暴利&#xff0c;他却要断了这条财路&#xff01;第二篇 人民日报 来啦 早班车新闻要闻社会政策 结尾 昨日之覆辙 非明日之方向 泰戈尔曾言 你不能拽着自己的头发离开地面 因…

电商企业如何用数据打造破局利器:电商API数据采集实时接口助力企业618双十一各大活动

在电商行业中&#xff0c;618大促无疑是一场引爆商机的盛宴。 随着市场环境的变更&#xff0c;如何在这样高强度的活动期间脱颖而出&#xff0c;成为每个品牌都需要面对的重要问题。 大促期间&#xff0c;实时、准确的数据是核心竞争力。因为在大促中&#xff0c;核心渠道、核…

HBase的Python API(happybase)操作

一、Windows下安装Python库&#xff1a;happybase pip install happybase -i https://pypi.tuna.tsinghua.edu.cn/simple 二、 开启HBase的Thrift服务 想要使用Python API连接HBase&#xff0c;需要开启HBase的Thrift服务。所以&#xff0c;在Linux服务器上&#xff0c;执行如…

PCL 彩色点云RGB转灰度并显示

目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、原理概述 不同要素之间的灰度差异较为明显。点云灰度值与RGB属性的关系为:

Mysql数据库:高级SQL语言详解

目录 前言 一、按关键字排序查询 1、单字段排序 1.1 按某一字段升序排序 1.2 按某一字段降序排序 1.3 结合where进行条件进行排序 2、多字段排序 2.1 按多字段升序排序 2.2 按多字段降序排序 2.3 案例操作 3、区间判断及查询不重复记录 3.1 区间判断 3.1.1 AND/OR…

【数据结构】链表习题之反转链表和删除链表中等于给定值 val 的所有节点

&#x1f451;个人主页&#xff1a;啊Q闻 &#x1f387;收录专栏&#xff1a;《数据结构》 &#x1f389;道阻且长&#xff0c;行则将至 前言 今天的博客是关于链表的题目&#xff0c;力扣上的题目之反转链表和删除链表中等于给定值 val 的所有节点 一.反转…

PMP考试难不难,通过率怎样?

PMP考试自从新考纲调整后有几次考试难度是非常高的&#xff0c;那段时间我也看网上好多机构通过率都不咋地&#xff0c;当时也是因为官方的出题难度稍高&#xff0c;还组织了免费的重考&#xff0c;也是后来逐渐开始归于平常了吧&#xff0c;直到现在都是我认为比较简单的选择题…

Go通道机制与应用详解

目录 一、概述二、Go通道基础通道&#xff08;Channel&#xff09;简介创建和初始化通道通道与协程&#xff08;Goroutine&#xff09;的关联nil通道的特性 三、通道类型与操作通道类型1. 无缓冲通道 (Unbuffered Channels)2. 有缓冲通道 (Buffered Channels) 通道操作1. 发送操…

杂货铺 | 使用 Github Pages 和 Hexo 搭建自己的独立博客

文章目录 &#x1f4da;Step1&#xff1a;安装Node.js和Git&#x1f4da;Step2&#xff1a;安装并初始化配置Hexo&#x1f4da;Step3&#xff1a;本地查看效果&#x1f4da;Step4&#xff1a;将博客部署到Github Pages上&#x1f407;创建项目代码库&#x1f407;配置SSH密钥&a…

VUE 支持 超大上G,多附件上传

代码&#xff1a;https://gitee.com/xproer/up6-vue-cli 1.引入up6组件 2.配置接口地址 接口地址分别对应&#xff1a;文件初始化&#xff0c;文件数据上传&#xff0c;文件进度&#xff0c;文件上传完毕&#xff0c;文件删除&#xff0c;文件夹初始化&#xff0c;文件夹删除&…

应急 | BuleHero挖矿蠕虫最新变种分析

背 景 挖矿蠕虫病毒BuleHero擅长利用各类漏洞攻击、弱密码爆破攻击。病毒作者不断更新变种&#xff0c;是近期最活跃的挖矿蠕虫病毒之一。攻击者最新的BuleHero挖矿蠕虫实现入侵后&#xff0c;还会释放挖矿程序&#xff0c;使服务器的资源被消耗挖矿&#xff0c;极大影响正常业…

【蓝桥杯】蓝桥杯算法复习(三)

&#x1f600;大家好&#xff0c;我是白晨&#xff0c;一个不是很能熬夜&#x1f62b;&#xff0c;但是也想日更的人✈。如果喜欢这篇文章&#xff0c;点个赞&#x1f44d;&#xff0c;关注一下&#x1f440;白晨吧&#xff01;你的支持就是我最大的动力&#xff01;&#x1f4…

Elasticsearch:虚拟形象辅助和对话驱动的语音到 RAG 搜索

作者&#xff1a;来自 Elastic Sunile Manjee 搜索的演变 搜索已经从产生简单结果的简单文本查询发展成为容纳文本、图像、视频和问题等各种格式的复杂系统。 如今的搜索结果通过生成式人工智能、机器学习和交互式聊天功能得到增强&#xff0c;提供更丰富、更动态且与上下文相…

Linux 注入依赖环境

文章目录 配置依赖程序安装 JDK安装 Tomcat安装 mysql 配置依赖程序 下面配置依赖程序都以CentOS为例。 安装 JDK 可以直接使用 yum(CentOS) 直接进行安装。 先搜索&#xff0c;确定软件包的完整名称。 yum list | grep jdk再进行安装 进行安装的时候一定要先确保处在“管理…

循环神经网络之语言模型和数据集

总结重要知识点 在给定这样的文本序列时&#xff0c;语言模型&#xff08;language model&#xff09;的目标是估计序列的联合概率 语言模型是自然语言处理的关键。 元语法通过截断相关性&#xff0c;为处理长序列提供了一种实用的模型。 长序列存在一个问题&#xff1a;它们…

JS new Array.fill(new Array()) 创建二维数组 fill方法的坑

我们通常会通过如下方式来创建一个二维数据&#xff1a; const arr new Array(5).fill(new Array(2).fill(0))我们如果想要修改其中一个元素的值 arr[0][0] 1输出&#xff1a;   我们只想给arr[0][0]赋值&#xff0c;但是每一行数组为0的下标元素的值全部改变了&#xf…

循序渐进丨MogDB 对 Oracle DBLink兼容性增强

本特性自 MogDB 5.0.0版本开始引入&#xff0c;支持 Oracle DBLink语法&#xff0c;可以使用符号访问 Oracle 数据库中的表。 示 例 01 环境准备 MogDB 环境 已安装 MogDB 数据库。已安装oracle_fdw插件&#xff0c;具体安装方法参见oracle_fdw安装文档https://docs.mogdb.io/…