Elasticsearch:虚拟形象辅助和对话驱动的语音到 RAG 搜索

作者:来自 Elastic Sunile Manjee

搜索的演变

搜索已经从产生简单结果的简单文本查询发展成为容纳文本、图像、视频和问题等各种格式的复杂系统。

如今的搜索结果通过生成式人工智能、机器学习和交互式聊天功能得到增强,提供更丰富、更动态且与上下文相关的用户体验。 不久前的搜索由文本查询和相关结果组成。

与你的数据对话,这是自然的

在对话支撑每一次互动的领域中,无论是与人类还是机器人,我们的搜索体验难道不应该反映这一基本方面吗? 想象一下企业内存在大量的公司文档。 自然地,这种环境会激发好奇心和大量问题,从而引发后续询问。 这种与生俱来的人类特质驱使我们寻求答案,根据最初的反应进行更深入的研究,并不断探索。 然而,传统的问答机制存在缺陷,因为它们经常忽视先前交流的背景,导致整个过程脱节且费力,感觉不自然,并促使用户过早退出。

超越问答

考虑使用电视搜索内容的行为,例如搜索尼古拉斯·凯奇主演的动作电影。 虽然大多数当前系统都能熟练地提供相关结果,但查询很少就此结束。 后续的问题,例如询问这些电影的运行时间或上映日期,是我们寻求信息的自然过程。 然而,标准搜索应用程序并不是为了促进持续对话而设计的; 它们是围绕孤立的问答格式构建的,这限制了交互和探索的深度。

与虚拟形象对话

这就是虚拟形象辅助搜索体验的概念发挥作用的地方,特别是在用户(包括我自己)更喜欢直接答案而无需筛选信息的情况下。 有时,我们希望能够方便地获得答案,而无需费力阅读内容。 开发用于生成响应的化身可以进一步使这种交互现代化,提供更具吸引力、更高效和更自然的用户体验。

Live Demo

在 Elasticsearch 中使用向量搜索驱动的机器学习动态分面

整合详情

语音转搜索

高级搜索体验始于用户语音交互,这些交互通过 Azure Speech to Text 转换为文本,形成搜索查询的基础。 然后,使用 ELSER 通过 Elasticsearch 处理该查询,以检索相关文档,例如列出 “action movies featuring Nicolas Cage - 尼古拉斯·凯奇主演的动作电影” 的电视指南。 这确保了搜索结果的准确性和相关性。

RAG 和缓存

在增强的搜索框架中,仅仅获取文档是不够的。 Azure OpenAI 的 GPT-4 将原始数据提炼为可理解的响应,确保对话流程顺畅。 此外,Elasticsearch 作为 GenAI 缓存层提高了效率,回收相关查询的答案,从而节省资源。 例如,如果有 “action movies featuring Nicolas Cage - 尼古拉斯·凯奇主演的动作电影” 的缓存响应,缓存 API 将迅速将其用于 “Nicolas Cage high-intensity movies - 尼古拉斯·凯奇高强度电影” 等类似问题,从而加速搜索体验。

虚拟形象响应生成

由 Azure Synthesizer 提供支持的虚拟形象响应功能进一步丰富了体验,添加了超越传统基于文本的界面的视觉和审核维度。 这创造了更具吸引力和交互性的用户体验,集成了各种先进技术以提供动态、直观和引人注目的搜索体验。

概括

从传统的 Google 搜索到 ChatGPT 等平台来回答查询的转变说明了一个更广泛的趋势:我们更喜欢对话而不是静态信息检索。 这种偏好强调了企业在搜索功能中采用更直观和对话式方法的重要性。 通过采用这种范式,企业可以更好地适应人类对话的自然倾向,从而增强其数据生态系统内的整体搜索和发现过程。

演示资源

仍然好奇,这是源代码的链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/495268.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux 注入依赖环境

文章目录 配置依赖程序安装 JDK安装 Tomcat安装 mysql 配置依赖程序 下面配置依赖程序都以CentOS为例。 安装 JDK 可以直接使用 yum(CentOS) 直接进行安装。 先搜索,确定软件包的完整名称。 yum list | grep jdk再进行安装 进行安装的时候一定要先确保处在“管理…

循环神经网络之语言模型和数据集

总结重要知识点 在给定这样的文本序列时,语言模型(language model)的目标是估计序列的联合概率 语言模型是自然语言处理的关键。 元语法通过截断相关性,为处理长序列提供了一种实用的模型。 长序列存在一个问题:它们…

JS new Array.fill(new Array()) 创建二维数组 fill方法的坑

我们通常会通过如下方式来创建一个二维数据: const arr new Array(5).fill(new Array(2).fill(0))我们如果想要修改其中一个元素的值 arr[0][0] 1输出:   我们只想给arr[0][0]赋值,但是每一行数组为0的下标元素的值全部改变了&#xf…

循序渐进丨MogDB 对 Oracle DBLink兼容性增强

本特性自 MogDB 5.0.0版本开始引入,支持 Oracle DBLink语法,可以使用符号访问 Oracle 数据库中的表。 示 例 01 环境准备 MogDB 环境 已安装 MogDB 数据库。已安装oracle_fdw插件,具体安装方法参见oracle_fdw安装文档https://docs.mogdb.io/…

[Linux_IMX6ULL驱动开发]-基础驱动

驱动的含义 如何理解嵌入式的驱动呢,我个人认为,驱动就是嵌入式上层应用操控底层硬件的桥梁。因为上层应用是在用户态,是无法直接操控底层的硬件的。我们需要利用系统调用(open、read、write等),进入内核态…

好看又好用,这 10 个宝藏 App 免费拿走不谢!

目录 1. 综合AI工具箱——HuluAI 2. 文本视频生成工具——Jujilu 3.翻译软件 —— TTime 4.专业录屏和直播软件 —— OBS Studio 5.开源跨平台轻量计时软件 —— wnr 6.开源跨平台绘图 —— Drawio 7.开源三维建模动画渲染 —— Blender 8.跨平台的多功能软件 —— Pear…

小满CRM怎么样,多少外贸公司在用?

我们在20年用过小满CRM,产品很明显是围绕着外贸业务场景设计的,功能很多,但价格相对来说也算贵的了,看了其他用户的使用感受发现小满的数据安全和服务器方面可能也有点问题。 我们最后选择了零代码平台自主搭建了一个CRM系统&…

4.Python数据分析—数据分析入门知识图谱索引(知识体系下篇)

4.Python数据分析—数据分析入门知识图谱&索引-知识体系下篇 一个人简介二机器学习基础2.1 监督学习与无监督学习2.1.1 监督学习:2.1.2 无监督学习: 2.2 特征工程2.3 常用机器学习算法概述2.3.1 监督学习算法:2.3.2 无监督学习算法&#…

拿下阿里面试:揭秘JVM对象引用的奥秘!

如有疑问或者更多的技术分享,欢迎关注我的微信公众号“知其然亦知其所以然”! 大家好,我是小米!今天我要和大家一起探讨的是JVM中的对象引用,这也是阿里巴巴面试中经常被问到的热门话题哦!在Java开发中,我们经常需要管理对象的引用,了解不同类型的引用对于优化内存、避…

【一】TensorFlow神经网络模型构建之神经元函数及优化方法

TensorFlow神经网络模型构建主要涉及如下几块:神经元函数、卷积函数、池化函数、分类函数、优化方法。下面分别对这几块进行展开说明: 神经元函数及优化方法 神经网络之所以能解决非线性问题(如语音、图像识别等),本…

web学习笔记(四十七)

目录 1. node.js中的三个全局变量 1.1 global 1.2 __dirname 文件夹的绝对路径 1.3 __filename 文件名的绝对路径 2.模块化 2.1 什么是模块化 2.2 模块化的好处 3. Node.js 中模块化 3.1 Node.js 中的模块化规范 4. Node.js 中的模块作用域 4.1module 对象 4.2 mod…

自定义你的商店 – 设计WooCommerce商店的新方法

WooCommerce 8.8即将推出,带来了一种无需代码即可创建精美商店的新方法。向“自定义你的商店”问好,这是一项全新功能,将取代“个性化你的商店”入门步骤。 自定义你的商店将利用最新的WordPress站点编辑工具以及酷炫的新Pattern Assembler …

深兰科技陈海波:生成式AI,新一轮知识生产力革命

3月26日,AIoT创新技术赋能工业数字化高峰论坛在上海市宝山区临港南大数智中心隆重举行。活动吸引了诸多行业内的专家学者、企业家及金融投资机构、政府园区、用户等多位业界精英出席,共同探讨该领域面临的挑战与机遇,分享最新的科研成果和技术…

【信号处理】基于DGGAN的单通道脑电信号增强和情绪检测(tensorflow)

关于 情绪检测,是脑科学研究中的一个常见和热门的方向。在进行情绪检测的分类中,真实数据不足,经常导致情绪检测模型的性能不佳。因此,对数据进行增强,成为了一个提升下游任务的重要的手段。本项目通过DCGAN模型实现脑…

【动手学深度学习】深入浅出深度学习之线性神经网络

目录 🌞一、实验目的 🌞二、实验准备 🌞三、实验内容 🌼1. 线性回归 🌻1.1 矢量化加速 🌻1.2 正态分布与平方损失 🌼2. 线性回归的从零开始实现 🌻2.1. 生成数据集 &#x…

泛微表单添加自定义按钮

页面效果&#xff1a; 点击按钮&#xff0c;将参数字段对应的值传入链接中。 表单配置如下&#xff1a; 然后插入js代码块&#xff0c;代码如下&#xff1a; <script> jQuery(document).ready(function(){ //在表单的按钮单元格插入自定义属性&#xff1a;ID&#xff1…

三级等保建设技术方案-Word

1信息系统详细设计方案 1.1安全建设需求分析 1.1.1网络结构安全 1.1.2边界安全风险与需求分析 1.1.3运维风险需求分析 1.1.4关键服务器管理风险分析 1.1.5关键服务器用户操作管理风险分析 1.1.6数据库敏感数据运维风险分析 1.1.7“人机”运维操作行为风险综合分析 1.2…

云能耗管理系统在某高校建筑系统平台的开发与应用

摘要&#xff1a;依据本项目依托某学院的电能计量管理系统、给水计量监管系统以及供热计量管理系统等基础平台&#xff0c;制订了高等学校建筑能耗综合管理系统平台应用的总体框架和方案&#xff0c;该系统可以对校园建筑的各种用能情况进行实时监测、统计能耗、进行能效分析&a…

DVWA-CSRF通关教程-完结

DVWA-CSRF通关教程-完结 文章目录 DVWA-CSRF通关教程-完结Low页面使用源码分析漏洞利用 Medium源码分析漏洞利用 High源码分析漏洞利用 impossible源码分析 Low 页面使用 当前页面上&#xff0c;是一个修改admin密码的页面&#xff0c;只需要输入新密码和重复新密码&#xff…

全局UI方法-弹窗三-文本滑动选择器弹窗(TextPickDialog)

1、描述 根据指定的选择范围创建文本选择器&#xff0c;展示在弹窗上。 2、接口 TextPickDialog(options?: TextPickDialogOptions) 3、TextPickDialogOptions 参数名称 参数类型 必填 参数描述 rang string[] | Resource 是 设置文本选择器的选择范围。 selected nu…