Prompt Engineering的4 种方法

此为观看视频 4 Methods of Prompt Engineering 后的笔记。

从通用模型到专用模型,fine tuning(微调)和prompt engineering(提示工程)是2种非常重要的方法。本文深入探讨了prompt engineering的4种方法。

首先,作者回顾了大语言模型的3种用例:聊天机器人,生成摘要,检索信息。在这3个用例中,prompt engineering对于和大语言模型进行有效的沟通至关重要。prompt engineering被设计用来提出适当的问题,以从大型语言模型中获得准确可信的答案,从而避免幻觉(hallucination)。 幻觉是指你从大语言模型中得到错误的结果,因为大语言模型主要基于互联网数据进行训练,其中可能存在不一致的信息,过时的信息和误导的信息。

下面将逐一介绍4种prompt engineering方法。

RAG (Retrieval Augmented Generation)

在这里插入图片描述
RAG就是检索增强生成,是一种将私域知识库与大语言模型集成的方案,之前在什么是RAG?中详细介绍过。RAG为模型增加了专域的知识。大语言模型是基于互联网数据训练的,他并不知道你的专域/私域信息。而我们希望将特定于行业,特定于企业的知识代入大模型,此时我们需要两个组件(看图),即检索器(Retriever)和生成(Generator)器。检索器将专域知识库的上下文带到大型语言模型的生成器,从而实现根据内容的领域特殊性来回答问题。 检索器可以像数据库搜索一样简单,确切地说,它可以是向量数据库。

例如,通过大语言模型询问一家公司特定年份的总收入,它会通过学习和互联网数据得出一个可能不准确的数字。 如果想获得准确的答案,那么就需要向领域知识库提出相同的问题。 然后大型语言模型将参考您的知识库来得出准确的答案。

在4种Prompt Engineering方法中,RAG是首选的方法。RAG的所有content grounding,就是让答案更接地气。

CoT(Chain of Thoughts)

在这里插入图片描述
第2种方法是思想链(CoT)。大语言模型,就像一个八岁的孩子一样,也需要引导以得到正确的答案。 思维链将一个大的任务分解为小任务,然后将小任务的答案合并以得到最终答案。例如,我们想知道一家公司 2022 年的总收入,我们可以问大语言模型,给我某公司2022年软件、硬件、咨询的总收入。像图中的例子,本质上是三个独立的查询,三个独立的提示。和大语言模型沟通的方式是告知问题并解释如何分解问题。RAG是基于专域知识库优化答案,CoT是基于子问题的答案优化最终答案。

ReAct (Thought, Action, and Observation)

在这里插入图片描述

ReAct与CoT类似,也是通过一些简短的提示技巧来改进最终结果。但ReAct比COT更进一步,不仅仅推理,而且会根据所需的其他条件来采取行动。例如,私域知识库并未包含所需的答案,ReAct 方法能够实际进入公共知识库中的私有信息并收集信息,然后得出响应。因此,ReAct 的行动部分是它能够访问外部资源(公共知识库)以获取更多信息,从而得出响应。

ReAct和CoT相比,都有推理(reasoning)的部分,但ReAct多了一个行动(acting)的部分。ReAct与RAG先比,都使用了私域数据库,不同的是,ReAct可以引入公开的内容和知识库。

例如,我们查询某公司2010和2022年的总收入,私域数据库中只有2022年的数据,2010年的数据就可以在外部资源中获取。

ReAct分为3个步骤:

  1. thought(思考,找什么)
  2. action(行动,去哪里,得到什么)
  3. observation(观察,第2步的汇总)

DSP (Direct Stimulus Prompting)

在这里插入图片描述

DSP(定向刺激提示)是一种全新方式,它指明一个方向,使大型语言模型能够从任务中提取特定信息。

例如,您提出一个问题:“某公司的年收入是多少?”,但你并想要一个总的数字,而是其中具体的软件或咨询的年收入。所以你给出一个提示:“软件或咨询”。然后,大语言模型就可以从中提取软件或咨询的具体数值。这就像你试图让某人画一幅画,通过你的提升,最终的画像会越来越清晰。但需要从任务中寻找特定值时,DSP的效果非常好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/494696.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL数据库的高级SQL语句与高级操作(2)

目录 一、子查询 1、语法: 2、以下例子均以图中两个表为基础 例子1:查询yun1班级大于85分的学生记录 例子2:将yun2班的学生记录放在一个单独的表中,叫yun2 例子3:教务处误把yun3班叫张丽的学生的成绩搞错了,应该为…

Machine Learning机器学习之向量机(Support Vector Machine,SVM)

目录 前言 算法提出背景: 核心思想: 原理: 应用领域: 一、支持向量机分类(主要变体) 二、构建常见的支持向量机模型 基于Python 中的 Scikit-learn 库构建线性支持向量机(SVM) 三、向…

Matplotlib数据可视化实战-2绘制折线图(2)

2.11营业额可视化 已知某学校附近一个烧烤店2022年每个月的营业额如下图所示。编写程序绘制折线图对该烧烤店全年营业额进行可视化,使用红色点画线连接每个月的数据,并在每个月的数据处使用三角形进行标记。 烧烤店营业额 月份123456789101112营业额/万…

Python调用Python并传参

常规 在Python中调用另一个Python脚本可以通过多种方式实现,例如使用subprocess模块或者直接导入模块。以下是两种常见的方法: 使用subprocess模块: 调用 import subprocess # 调用另一个Python脚本,例如script.py subprocess.r…

ES5和ES6的深拷贝问题

深拷贝我们知道是引用值的一个问题,因为在拷贝的时候,拷贝的是在内存中同一个引用。所以当其中的一个应用值发生改变的时候,其他的同一个引用值也会发生变化。那么针对于这种情况,我们需要进行深度拷贝,这样就可以做到…

centos安装jdk的坑

文章目录 一、安装jdk二、查找jdk的目录三、配置JAVA_HOME 一、安装jdk 我们一般用yum search java | grep jdk查询可以安装的jdk 但是一定要注意如下图,必须知道jdk和jre的区别 yum install java-1.8.0-openjdk-devel.x86_64二、查找jdk的目录 用如下命令 sudo…

云电脑安全性怎么样?企业如何选择安全的云电脑

云电脑在保障企业数字资产安全方面,采取了一系列严谨而全面的措施。随着企业对于数字化转型的深入推进,数字资产的安全问题日益凸显,而云电脑作为一种新兴的办公模式,正是为解决这一问题而生。云电脑安全吗?可以放心使…

Mybatis-获取参数值的两种方式

1. ${ } 和 #{ } MyBatis获取参数值的两种方式:${ } 和 #{ } 对于初学者来说,理解MyBatis中获取参数值的两种方式——#{}和${},关键在于明白它们如何影响SQL语句的构建以及为何在安全性、灵活性上有显著差异。下面我将用简单易懂的语言来解…

Flutter开发之下标

Flutter开发之下标 在iOS开发中使用下标就很方便,本文主要是记录一下Flutter中系统自带的下标,还可以通过对应的方法编写自己的下标。 在Objective-C中的下标 关键字Subscript。 NSArray - (ObjectType)objectAtIndexedSubscript:(NSUInteger)idx A…

Abaqus周期性边界代表体单元Random Sphere RVE 3D (Mesh)插件

插件介绍 Random Sphere RVE 3D (Mesh) - AbyssFish 插件可在Abaqus生成三维具备周期性边界条件(Periodic Boundary Conditions, PBC)的随机球体骨料及骨料-水泥界面过渡区(Interfacial Transition Zone, ITZ)模型。即采用周期性代表性体积单元法(Periodic Representative Vol…

vscode上编辑vba

安装xvba插件更换vscode的工作目录启动扩展服务器在config.json中添加目标工作簿的名称加载excel文件(必须带宏的xlsm)这个扩展就会自动提取出Excel文件中的代码Export VBA(编辑完成的VBA代码保存到 Excel文件 )再打开excel文件可…

java中的单例模式

一、描述 单例模式就是程序中一个类只能有一个对象实例 举个例子: //引出单例模式,一个类中只能由一个对象实例 public class Singleton1 {private static Singleton1 instance new Singleton1();//通过这个方法来获取实例public static Singleton1 getInstance…

标定系列——预备知识-OpenCV中与标定板处理相关的函数(四)

标定系列——预备知识-OpenCV中与标定板处理相关的函数(四) 说明记录棋盘格圆网格 说明 记录了OpenCV中与标定板处理相关的函数用法 记录 棋盘格 圆网格

Qt源程序编译及错误问题解决

Error 5 while parsing C:/qt-everywhere-src-6.6.2/qt-build/qtdeclarative/src/qmlmodels/meta_types/qt6qmlmodels_release_metatypes.json: illegal value .json 文件为空文件0字节,加 “[]”,不要引号。可以解决这类错误。 Qt编译 Qt for Windows…

[BT]BUUCTF刷题第9天(3.27)

第9天(共2题) [护网杯 2018]easy_tornado 打开网站就是三个txt文件 /flag.txt flag in /fllllllllllllag/welcome.txt render/hints.txt md5(cookie_secretmd5(filename))当点进flag.txt时,url变为 http://b9e52e06-e591-46ad-953e-7e8c5f…

WPF 命名空间解释

在C#中有命名空间的概念,我们可以使用using引入,就可以使用其中的类,在xaml中,也同样有命名空间,在window标签中用xmlns声明的这几行,这就是本页面引入的命名空间。 一般的情况下,我们引入命名空…

左手医生:医疗 AI 企业的云原生提效降本之路

相信这样的经历对很多人来说并不陌生:为了能到更好的医院治病,不惜路途遥远奔波到大城市;或者只是看个小病,也得排上半天长队。这些由于医疗资源分配不均导致的就医问题已是老生长谈。 云计算、人工智能、大数据等技术的发展和融…

qt-C++笔记之QSpinBox控件

qt-C笔记之QSpinBox控件 code review! 文章目录 qt-C笔记之QSpinBox控件1.运行2.main.cpp3.main.pro4.《Qt6 C开发指南》&#xff1a;4.4 QSpinBox 和QDoubleSpinBox 1.运行 2.main.cpp #include <QApplication> #include <QSpinBox> #include <QPushButton&g…

数据结构——排序算法

1、排序的概念 排序是指的是将一组数据&#xff08;如数字、单词、记录等&#xff09;按照某种特定的顺序&#xff08;升序或降序&#xff09;进行排列的过程。排序算法是实现排序的程序或方法&#xff0c;它们在软件开发和数据处理中扮演着至关重要的角色。 排序算法可以根据…

人脸68关键点与K210疲劳检测

目录 人脸68关键点检测 检测闭眼睁眼 双眼关键点检测 计算眼睛的闭合程度&#xff1a; 原理: 设置阈值进行判断 实时监测和更新 拓展&#xff1a;通过判断上下眼皮重合程度去判断是否闭眼 检测嘴巴是否闭合 提取嘴唇上下轮廓的关键点 计算嘴唇上下轮廓关键点之间的距…