Machine Learning机器学习之向量机(Support Vector Machine,SVM)

目录

前言

算法提出背景:

核心思想:

原理:

应用领域:

一、支持向量机分类(主要变体)

 二、构建常见的支持向量机模型

基于Python 中的 Scikit-learn 库构建线性支持向量机(SVM)

三、向量机应用案列(完整代码)

四、总结 

优点:

缺点:

优化方向:


博主介绍:✌专注于前后端、机器学习、人工智能应用领域开发的优质创作者、秉着互联网精神开源贡献精神,答疑解惑、坚持优质作品共享。本人是掘金/腾讯云/阿里云等平台优质作者、擅长前后端项目开发和毕业项目实战,深受全网粉丝喜爱与支持✌有需要可以联系作者我哦!

🍅文末三连哦🍅

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

前言

支持向量机(Support Vector Machine,SVM)是由Vladimir N. Vapnik等人于1990年提出的一种监督学习算法。它的核心思想通过在特征空间中找到一个最优的超平面来进行分类,使得两个类别的样本之间的间隔最大化。SVM 在分类、回归分析、异常检测等领域都有着广泛的应用。

算法提出背景:

支持向量机最初是为了解决二分类问题而提出的。其发展背景主要源于统计学习理论和凸优化理论的发展。在提出之初,SVM 主要用于处理线性可分的数据集,后来又发展出了核技巧(kernel trick),使其能够处理非线性分类问题。

核心思想:

SVM 的核心思想是找到一个最优的超平面,将不同类别的样本分隔开来,并且使得两个类别之间的间隔最大化。具体来说,SVM 算法的目标是找到一个决策边界(超平面),使得所有的样本点到这个边界的距离(即间隔)最大化。

原理:

  1. 间隔最大化: SVM 算法通过最大化分类边界与最近的训练样本点之间的间隔来实现分类。

  2. 支持向量: 在优化问题中,只有一部分训练样本点被称为支持向量,它们是离分类边界最近的样本点。

  3. 核技巧: SVM 使用核技巧来将线性分类扩展到非线性分类。核技巧是一种数学手段,可以在高维特征空间中进行计算,而不需要显式地计算高维空间中的特征向量。

支持向量机的原理的公式来描述:

对于二分类问题,给定一个训练数据集:

支持向量机的原理可以通过以下公式来描述:

对于二分类问题,给定一个训练数据集:

\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \ldots, (\mathbf{x}_n, y_n)\}, \quad y_i \in \{-1, 1\}

其中{x}_i是输入样本的特征向量,y_i 是对应的类别标签,取值为-1或 1。

我们的目标是找到一个超平面 w^T \mathbf{x} + b = 0,能够将两类样本分开,并且使得两个类别中距离超平面最近的样本点到超平面的距离最大。这个距离称为间隔(margin)。

应用领域:

  1. 分类问题: SVM 主要用于解决二分类问题,可以通过调整参数和选择合适的核函数来适应不同的数据特征。

  2. 回归分析: SVM 还可以应用于回归分析问题,称为支持向量回归(Support Vector Regression,SVR),通过最小化预测值与真实值之间的误差来拟合数据。

  3. 异常检测: SVM 还可以用于异常检测,通过找到与训练样本差异较大的数据点来识别异常。

一、支持向量机分类(主要变体)

向量机广泛应用于分类和回归分析的监督学习算法

在支持向量机算法中,主要有以下几种主要的变体:

  • 线性支持向量机(Linear SVM): 最基本的支持向量机形式,用于处理线性可分或近似线性可分的数据。通过构建一个最大间隔超平面来分隔两个类别。

  • 非线性支持向量机(Nonlinear SVM): 通过使用核技巧(kernel trick),将数据映射到高维空间中进行分类,从而处理非线性可分的数据。常用的核函数包括多项式核、高斯核(径向基函数核)等。

  • 支持向量回归(Support Vector Regression,SVR): SVM 不仅可以用于分类问题,还可以用于回归分析。支持向量回归尝试通过最大化边界以外数据点的容忍度来拟合数据。

  • 多类别支持向量机(Multiclass SVM): SVM 最初是针对二分类问题的,但可以通过一对一(One-vs-One)或一对其他(One-vs-Rest)的策略来处理多类别分类问题。

  • 增量式支持向量机(Incremental SVM): 增量式支持向量机允许在训练数据集发生变化时对模型进行增量式的更新,而无需重新训练整个模型。

  • 稀疏支持向量机(Sparse SVM): 稀疏支持向量机通过引入稀疏性约束,以减少模型中使用的支持向量的数量,从而降低模型的复杂度。

 二、构建常见的支持向量机模型

构建一个常见的支持向量机(SVM)网络通常涉及以下步骤:

  1. 数据准备: 准备用于训练和测试的数据集,包括特征和标签。确保数据集经过适当的预处理,如归一化、缺失值处理等。

  2. 模型选择: 选择合适的支持向量机模型,包括线性 SVM、非线性 SVM(使用核技巧)等,根据问题的性质选择合适的模型。

  3. 模型训练: 使用训练数据对支持向量机模型进行训练。训练过程主要包括优化超参数和拟合数据。

  4. 模型评估: 使用测试数据对训练好的模型进行评估,评估模型的性能指标如准确率、精确率、召回率、F1 值等。

  5. 模型调优: 根据评估结果调整模型的超参数或者进行特征选择等操作,进一步提高模型的性能。

基于Python 中的 Scikit-learn 库构建线性支持向量机(SVM)

# 导入必要的库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载数据集(这里以鸢尾花数据集为例)
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 特征标准化(对特征进行归一化处理)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# 初始化支持向量机模型
svm = SVC(kernel='linear', random_state=42)

# 训练支持向量机模型
svm.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = svm.predict(X_test)

# 计算模型准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

执行结果:精度为100%

三、向量机应用案列(完整代码)

基于支持向量机(SVM)可以用于图像分类任务,以下通过使用 SVM 对手写数字进行识别。

我们使用了 sklearn 中的手写数字数据集(Digits Dataset)。我们将数据集划分为训练集和测试集,并对特征进行了标准化处理。然后,我们初始化了一个支持向量机模型,并使用训练集对其进行训练。最后,在测试集上进行预测,并计算了模型的准确率。

需要注意的是选择了径向基函数核(RBF Kernel),这是一种常用的非线性核函数,适用于处理非线性分类问题,如图像分类。我们可以根据实际情况选组需要的函数核。

# 导入必要的库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载手写数字数据集
digits = datasets.load_digits()

# 获取特征和标签
X = digits.data
y = digits.target

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 特征标准化(对特征进行归一化处理)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# 初始化支持向量机模型
svm = SVC(kernel='rbf', random_state=42)

# 训练支持向量机模型
svm.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = svm.predict(X_test)

# 计算模型准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

执行结果:精度约为98% 

四、总结 

优点:

  1. 有效的高维空间处理能力: SVM 在高维空间中可以非常高效地进行分类,适用于数据维度较高的情况,如文本分类、图像分类等。

  2. 泛化能力强: SVM 的目标是最大化分类边界的间隔,因此具有较好的泛化能力,对于未见过的数据集也有较好的表现。

  3. 抗噪声能力强: SVM 使用间隔最大化的方法,对于噪声数据的影响较小,能够更好地处理不完全标记的数据。

  4. 可以处理非线性分类问题: 通过核技巧(kernel trick),SVM 可以很容易地将线性分类扩展到非线性分类,适用于复杂的数据分布。

  5. 无局部极小值问题: SVM 的优化问题是凸优化问题,不存在局部极小值,因此能够保证找到全局最优解。

缺点:

  1. 对大规模数据集计算量较大: 在大规模数据集上,SVM 的训练时间较长,且占用的内存较大,不适合处理大规模数据集。

  2. 参数调节和核选择不直观: SVM 的性能很大程度上依赖于选择合适的核函数和参数调节,这些参数的选择通常不太直观,需要经验和实验来确定。

  3. 不适合非平衡数据集: SVM 对非平衡数据集的处理能力相对较弱,需要额外的处理手段来解决非平衡分类问题。

优化方向:

  1. 增量学习: 研究如何将新的样本数据逐步融入到原有的 SVM 模型中,以实现在线学习和动态更新模型。

  2. 并行化和分布式处理: 针对大规模数据集,研究如何将 SVM 训练过程进行并行化和分布式处理,以提高训练效率。

  3. 自动化参数调节: 研究自动化调节 SVM 参数的方法,例如使用基于优化算法或者交叉验证的方法来选择合适的参数。

  4. 深度学习与 SVM 结合: 探索深度学习和 SVM 结合的方法,以利用深度学习的特征提取能力和 SVM 的优化能力。

  5. 多核函数选择: 研究不同数据集和问题情况下,选择合适的核函数的方法,以进一步提高 SVM 的性能。

🍅文末三连哦🍅感谢支持

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/494691.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Matplotlib数据可视化实战-2绘制折线图(2)

2.11营业额可视化 已知某学校附近一个烧烤店2022年每个月的营业额如下图所示。编写程序绘制折线图对该烧烤店全年营业额进行可视化,使用红色点画线连接每个月的数据,并在每个月的数据处使用三角形进行标记。 烧烤店营业额 月份123456789101112营业额/万…

Python调用Python并传参

常规 在Python中调用另一个Python脚本可以通过多种方式实现,例如使用subprocess模块或者直接导入模块。以下是两种常见的方法: 使用subprocess模块: 调用 import subprocess # 调用另一个Python脚本,例如script.py subprocess.r…

ES5和ES6的深拷贝问题

深拷贝我们知道是引用值的一个问题,因为在拷贝的时候,拷贝的是在内存中同一个引用。所以当其中的一个应用值发生改变的时候,其他的同一个引用值也会发生变化。那么针对于这种情况,我们需要进行深度拷贝,这样就可以做到…

centos安装jdk的坑

文章目录 一、安装jdk二、查找jdk的目录三、配置JAVA_HOME 一、安装jdk 我们一般用yum search java | grep jdk查询可以安装的jdk 但是一定要注意如下图,必须知道jdk和jre的区别 yum install java-1.8.0-openjdk-devel.x86_64二、查找jdk的目录 用如下命令 sudo…

云电脑安全性怎么样?企业如何选择安全的云电脑

云电脑在保障企业数字资产安全方面,采取了一系列严谨而全面的措施。随着企业对于数字化转型的深入推进,数字资产的安全问题日益凸显,而云电脑作为一种新兴的办公模式,正是为解决这一问题而生。云电脑安全吗?可以放心使…

Mybatis-获取参数值的两种方式

1. ${ } 和 #{ } MyBatis获取参数值的两种方式:${ } 和 #{ } 对于初学者来说,理解MyBatis中获取参数值的两种方式——#{}和${},关键在于明白它们如何影响SQL语句的构建以及为何在安全性、灵活性上有显著差异。下面我将用简单易懂的语言来解…

Flutter开发之下标

Flutter开发之下标 在iOS开发中使用下标就很方便,本文主要是记录一下Flutter中系统自带的下标,还可以通过对应的方法编写自己的下标。 在Objective-C中的下标 关键字Subscript。 NSArray - (ObjectType)objectAtIndexedSubscript:(NSUInteger)idx A…

Abaqus周期性边界代表体单元Random Sphere RVE 3D (Mesh)插件

插件介绍 Random Sphere RVE 3D (Mesh) - AbyssFish 插件可在Abaqus生成三维具备周期性边界条件(Periodic Boundary Conditions, PBC)的随机球体骨料及骨料-水泥界面过渡区(Interfacial Transition Zone, ITZ)模型。即采用周期性代表性体积单元法(Periodic Representative Vol…

vscode上编辑vba

安装xvba插件更换vscode的工作目录启动扩展服务器在config.json中添加目标工作簿的名称加载excel文件(必须带宏的xlsm)这个扩展就会自动提取出Excel文件中的代码Export VBA(编辑完成的VBA代码保存到 Excel文件 )再打开excel文件可…

java中的单例模式

一、描述 单例模式就是程序中一个类只能有一个对象实例 举个例子: //引出单例模式,一个类中只能由一个对象实例 public class Singleton1 {private static Singleton1 instance new Singleton1();//通过这个方法来获取实例public static Singleton1 getInstance…

标定系列——预备知识-OpenCV中与标定板处理相关的函数(四)

标定系列——预备知识-OpenCV中与标定板处理相关的函数(四) 说明记录棋盘格圆网格 说明 记录了OpenCV中与标定板处理相关的函数用法 记录 棋盘格 圆网格

Qt源程序编译及错误问题解决

Error 5 while parsing C:/qt-everywhere-src-6.6.2/qt-build/qtdeclarative/src/qmlmodels/meta_types/qt6qmlmodels_release_metatypes.json: illegal value .json 文件为空文件0字节,加 “[]”,不要引号。可以解决这类错误。 Qt编译 Qt for Windows…

[BT]BUUCTF刷题第9天(3.27)

第9天(共2题) [护网杯 2018]easy_tornado 打开网站就是三个txt文件 /flag.txt flag in /fllllllllllllag/welcome.txt render/hints.txt md5(cookie_secretmd5(filename))当点进flag.txt时,url变为 http://b9e52e06-e591-46ad-953e-7e8c5f…

WPF 命名空间解释

在C#中有命名空间的概念,我们可以使用using引入,就可以使用其中的类,在xaml中,也同样有命名空间,在window标签中用xmlns声明的这几行,这就是本页面引入的命名空间。 一般的情况下,我们引入命名空…

左手医生:医疗 AI 企业的云原生提效降本之路

相信这样的经历对很多人来说并不陌生:为了能到更好的医院治病,不惜路途遥远奔波到大城市;或者只是看个小病,也得排上半天长队。这些由于医疗资源分配不均导致的就医问题已是老生长谈。 云计算、人工智能、大数据等技术的发展和融…

qt-C++笔记之QSpinBox控件

qt-C笔记之QSpinBox控件 code review! 文章目录 qt-C笔记之QSpinBox控件1.运行2.main.cpp3.main.pro4.《Qt6 C开发指南》&#xff1a;4.4 QSpinBox 和QDoubleSpinBox 1.运行 2.main.cpp #include <QApplication> #include <QSpinBox> #include <QPushButton&g…

数据结构——排序算法

1、排序的概念 排序是指的是将一组数据&#xff08;如数字、单词、记录等&#xff09;按照某种特定的顺序&#xff08;升序或降序&#xff09;进行排列的过程。排序算法是实现排序的程序或方法&#xff0c;它们在软件开发和数据处理中扮演着至关重要的角色。 排序算法可以根据…

人脸68关键点与K210疲劳检测

目录 人脸68关键点检测 检测闭眼睁眼 双眼关键点检测 计算眼睛的闭合程度&#xff1a; 原理: 设置阈值进行判断 实时监测和更新 拓展&#xff1a;通过判断上下眼皮重合程度去判断是否闭眼 检测嘴巴是否闭合 提取嘴唇上下轮廓的关键点 计算嘴唇上下轮廓关键点之间的距…

案例分析-IEEE 754浮点标准

案例一&#xff1a; 请分析IEEE 754双精度浮点数规格化数的表示范围。 案例二&#xff1a; 规格化浮点数的Bias为什么采用2k-1-1而不是2k-1​&#xff1f;非规范数的指数E1-Bias而不是0-Bias&#xff1f; &#xff08;1&#xff09; ① bias 127时 E e - 127 &#xff08;00…

Remote Desktop Manager for Mac:远程桌面管理软件

Remote Desktop Manager for Mac&#xff0c;是远程桌面管理的理想之选。它集成了多种远程连接技术&#xff0c;无论是SSH、RDP还是VNC&#xff0c;都能轻松应对&#xff0c;让您随时随地安全访问远程服务器和工作站。 软件下载&#xff1a;Remote Desktop Manager for Mac下载…