Python 指南-最短路径(Dijkstra 算法):

        Dijkstra 算法可在 Python 库 OSMNX 中实现,可用于查找两个位置之间按距离或时间加权的最短路径。该算法使用 OpenStreetMap (OSM) 网络来驾驶、步行或骑自行车,并在后台使用 Python 库 NETWORKX 查找路线。

编码练习

正如我提到的,我将做一个分步指南,所以让我们开始吧。首先让我们导入所需的库

import osmnx as ox
import geopandas as gpd
from shapely.geometry import Point, LineString
import pandas as pd
import matplotlib.pyplot as plt

1. 定义出发地和目的地

简单地说,我们将创建几何对象作为点:

# origin and destination geom

origin_geom = Point(-5.6613932957355715, 32.93210288339607)

destination_geom = Point(-3.3500597061072726, 34.23038027794419)

2. 获取OSM Graph对象

然后,我们将提取将用于生成最短路径的图。让我们一步一步来看看。

  • 从起点和终点创建 GeoDataFrame
# create origin dataframe
origin =  gpd.GeoDataFrame(columns = ['name', 'geometry'], crs = 4326, geometry = 'geometry')
origin.at[0, 'name'] = 'origin'
origin.at[0, 'geometry'] =origin_geom

# create destination dataframe
destination =  gpd.GeoDataFrame(columns = ['name', 'geometry'], crs = 4326, geometry = 'geometry')
destination.at[0, 'name'] = 'destination'
destination.at[0, 'geometry'] = destination_geom

  • 获取包含出发地和目的地的图表

我们将使用 Geopandas 中的函数Envelope来使用多边形作为掩码来获取图形。

首先是一个简单的功能。

def get_graph_from_locations(origin, destination, network='drive'):
    '''
    network_type as drive, walk, bike
    origin gdf 4326
    destination gdf 4326
    '''
    # combine and area buffer
    combined = pd.concat([origin, destination])

    convex = combined.unary_union.envelope # using envelope instead of convex, otherwise it breaks the unary_union
    
    graph_extent = convex.buffer(0.02)

    graph = ox.graph_from_polygon(graph_extent, network_type= network)

    return graph

然后,使用它并绘制结果。

graph = get_graph_from_locations(origin, destination)
fig, ax = ox.plot_graph(graph, node_size=0, edge_linewidth=0.2)

图片由作者提供。图表包含出发地和目的地

3. 查找最近的出发地和目的地节点

使用起始位置和目标位置获取属于网络一部分的最近节点。可以使用 osmnx 函数获取节点的代码。

# ------------- get closest nodes

# origin
closest_origin_node = ox.nearest_nodes(G=graph, 
                                       X=origin_geom.x, 
                                       Y=origin_geom.y)

# destination
closest_destination_node = ox.nearest_nodes(G=graph, 
                                           X=destination_geom.x, 
                                           Y=destination_geom.y)

您可以检查并注意到我们目前只有代码。

4. 寻找最短路径

然后,利用最短路径函数来获取路径。

# run
route = ox.shortest_path(graph, 
                         orig = closest_origin_node, 
                         dest = closest_destination_node, 
                         weight = 'length')

这将返回一堆作为路由一部分的节点代码。

图片来自AuthorNode的代码

5. 从节点创建线几何图形

我们将从图中提取节点的几何图形并创建表示最短路径的 LineString 几何图形

首先是一个用于此的函数。

def nodes_to_route(graph_nodes, path_nodes):

    # Extract the route nodes of the graph
    route_nodes = graph_nodes.loc[path_nodes]

    # ---> note! If you have more routes, check for each one, to be removed in length is 1.  A path can not be built with only 1 node.

    # Create a LineString out of the route
    list_geom = route_nodes.geometry.to_list()
    path = LineString(list_geom)

    # Append the result into the GeoDataFrame
    route_df = gpd.GeoDataFrame( [[path]] )

    # Add a column name
    route_df.columns = ['geometry'] 

    # Set geometry
    route_df = route_df.set_geometry('geometry')

    # Set coordinate reference system
    route_df.crs = graph_nodes.crs
    
    # remove nans
    route_df = route_df.dropna(subset=['geometry'])

    return route_df

获取节点,并在函数中使用它们。

# get all network nodes
graph_nodes = ox.graph_to_gdfs(graph, edges=False)

# get the line geometries from osm nodes
route_gdf = nodes_to_route(graph_nodes, route)

6. 计算距离

我们将使用墨卡托投影以米为单位测量路线。如果您想要更准确的信息,可以使用位置投影。

首先,为此提供一个函数。

def compute_distance(shortest_path_gdf):
    '''
    Compute distance in EPSG:3387
    
    '''
    
    # project WGS84 to EPSG3387
    distances = shortest_path_gdf.to_crs("EPSG:3387").geometry.length
    
    # add
    shortest_path_gdf['distance'] = distances
    
    return shortest_path_gdf

然后,使用它:

# calculate distance m
route_distance_gdf = compute_distance(route_gdf)

它将测量大约 351.243 米的路线。

7. 保存网络和路径

将地图的网络和路径保存在本地磁盘中。

获取网络并定义 GeoDataFrame:

# fetch network
network = ox.graph_to_gdfs(graph, nodes=False)

# get only needed columns
network_gdf = network.reset_index(drop=True)[['geometry']]

然后存储:

network_gdf.to_file( r'osm_network.gpkg' )
route_distance_gdf.to_file( r'osm_shortest_path.gpkg' )

您可以使用此数据来创建您自己的地图。例如QGIS中的这个:

图片由作者提供。 QGIS中的最短路径和网络

8. 绘制结果

我们将通过绘制所有元素来检查我们的工作是否正确。

# plot network
ax = network_gdf.plot(figsize=(12, 10), linewidth = 0.2, color='grey', zorder=0);

# origin and destination
origin.plot(ax=ax, markersize=46, alpha=0.8, color='blue', zorder=1)
destination.plot(ax=ax, markersize=46, alpha=0.8, color='green', zorder=2)

# route
route_distance_gdf.plot(ax=ax, linewidth = 3, color='red', alpha=0.4, zorder=3)

plt.axis(False);

结果就这么简单。

图片由作者提供。 Matplotlib 中的最短路径、网络、起点和终点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/490147.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 8.0.35 企业版开启审计audit log功能

一、系统环境和要求 在MySQL中,开启日志审计可以记录数据库的操作日志,包括修改、删除、插入等操作。这对于追踪和分析数据库的使用情况以及排查潜在的安全问题非常有帮助。本文将详细介绍如何开启MySQL的日志审计功能。 操作系统:Ubuntu 20…

距离AI PC起飞,还差了点什么?

作者 | 张未 来源 | 洞见新研社 PC行业也没有逃过万物皆可AI的真香定律。 英伟达在前喊出AI PC的口号后,一众PC厂商纷纷加码这一最新概念,有关AI PC的讨论点燃了PC市场。 最直观的变化就是,全球PC市场终于止住了颓势,打破了七连…

JavaWeb开发-前端CSS基础

CSS层叠样式表基本语法 层叠样式表,用来控制页面的样式 (1)CSS的三种引入方式 内部样式表:适合学习使用,将CSS代码写在style标签里面,style标签嵌套在title里 外部样式表:开发常使用,将CSS代…

Windows Server配置MySQL主从数据库

目录 一,环境准备 1.1.安装MySQL 1.2.主数据库配置 1.3.从数据库的配置 二,主从同步配置 2.1.主库设置 2.2.查看二进制日志的状态 2.3.从数据库配置 2.4.配置完成测试 一,环境准备 1.1.安装MySQL 我用虚拟机安装两台 Windows Serv…

Requests教程-19-token认证

领取资料,咨询答疑,请➕wei: June__Go 上一小节中我们学习了requests的auth认证方法,本小节我们学习一下requests的token认证。 token的来源: 当客户端多次向服务端请求数据时,服务端就需要多次从数据库中查询用户…

SpringBoot扩展篇:循环依赖源码链路

SpringBoot扩展篇:循环依赖源码链路 1. 相关文章2. 一个简单的Demo3. 流程图3.1 BeanDefinition的注册3.2 开始创建Bean3.3 从三级缓存获取Bean3.4 创建Bean3.5 实例化Bean3.6 添加三级缓存3.7 属性初始化3.8 B的创建过程3.9 最终流程 1. 相关文章 SpringBoot 源码…

何恺明重提十年之争——模型表现好是源于能力提升还是捕获数据集偏置?

想象一下,如果把世界上所有的图片都找来,给它们放到一块巨大的空地上,其中内容相似的图片放得近一些,内容不相似的图片放得远一些(类比向量嵌入)。然后,我随机地向这片空地撒一把豆子&#xff0…

【计算机图形学】AO-Grasp: Articulated Object Grasp Generation

对AO-Grasp: Articulated Object Grasp Generation的简单理解 文章目录 1. 做的事情2. AO-Grasp数据集2.1 抓取参数化和label标准2.2 语义和几何感知的抓取采样 3. AO-Grasp抓取预测3.1 预测抓取点3.2 抓取方向预测 4. 总结 1. 做的事情 引入AO-Grasp,grasp propo…

【MySQL】聊聊自增id用完怎么办?

在实际的开发中,一般都会将数据存储到数据库中,在设计表的时候,其实id如果达到最大值的话,会出现什么问题。其实主要分两种情况,一种是设置了主键id,另一种没有设置主键id。 表定义自增值id create table…

如何利用FLUENT计算流体力学方法解决大气与环境领域流动问题

ANSYS FLUENT是目前全球领先的商用CFD 软件,市场占有率达70%左右,是工程师和研究者不可多得的有力工具。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技…

SOC子模块---RTC and watchdog

RTC RTC大致执行过程: 对SOC 中的锁相环或者外部晶振的时钟进行计数;产生时,分,秒的中断;送给中断控制器;中断控制器进行优先权选择后送给cpu;Cpu执行中断服务程序;在中断服务程序…

OpenGL学习笔记【4】——创建窗口,给窗口添加渲染颜色

一、前三章节的前情回顾 章节一:上下文(Context) OpenGL学习笔记【1】——简介-CSDN博客 章节一讲述了OpenGL在渲染的时候需要一个Context来记录了OpenGL渲染需要的所有信息和状态,可以把上下文理解成一个大的结构体,它里面记录了当前绘制使…

JavaSE系统性总结全集(精华版)

目录 1. 面向对象(封装,继承,多态)详解 1.1 面向过程和面向对象的区别 1.2面向对象的三大特性 1.2.1 封装 1.2.2 继承 1.2.3 多态 1.2.4 方法重写和方法重载的区别(面试题) 1.2.5 访问权限修饰符分…

动听的洗牌游戏(Java篇ArrayList实操)

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人…

【数仓】DataX软件安装及配置,从mysql同步到hdfs

相关文章 【数仓】基本概念、知识普及、核心技术【数仓】数据分层概念以及相关逻辑【数仓】Hadoop软件安装及使用(集群配置)【数仓】Hadoop集群配置常用参数说明【数仓】zookeeper软件安装及集群配置【数仓】kafka软件安装及集群配置【数仓】flume软件安…

PyTorch----torch.nn.Linear()函数

torch.nn.Linear是PyTorch中的一个模块,用于在神经网络中实现完全连接层。它表示输入张量的一个线性变换通过将它与一个权矩阵相乘并加上一个偏置项。 下面是torch.nn.Linear的语法: torch.nn.Linear(in_features, out_features, biasTrue)参数: in_f…

干货分享之反射笔记

入门级笔记-反射 一、利用反射破泛型集合二、Student类三、获取构造器的演示和使用1.getConstructors只能获取当前运行时类的被public修饰的构造器2.getDeclaredConstructors:获取运行时类的全部修饰符的构造器3.获取指定的构造器3.1得到空构造器3.2得到两个参数的有参构造器&a…

【项目技术介绍篇】如何从码云gitee下载项目代码

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过大学刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是&#xff0…

用 C++ 编码架构图的最佳用例

统一建模语言(UML),作为一种实际应用的语言标准,借助一系列架构图呈现建模软件系统。UML 的出现鼓励了自动化软件工具的开发,有助于自动代码生成。UML 图面向对象系统和软件工具,将静态结构和动态行为以可视…

python---协程与任务详解

文章目录 前言一. 基本概念了解与学习1.1 阻塞1.2 非阻塞1.3 同步1.4 异步1.5 多进程1.6 协程 二. 示例操作对比2.1 同步调用2.2 多进程2.3 异步IO 三. 异步协程3.1 定义协程3.2 多任务协程3.3 协程实现3.4 使用 aiohttp3.5 与多进程结合 总结 前言 之前爬虫使用的是requests多…