目录
647. 回文子串
16.最长回文子序列
647. 回文子串
力扣题目链接(opens new window)
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
- 输入:"abc"
- 输出:3
- 解释:三个回文子串: "a", "b", "c"
示例 2:
- 输入:"aaa"
- 输出:6
- 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
思路:
如图:
我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。
那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。
所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
- 确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是回文子串
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
class Solution {
public:
int countSubstrings(string s) {
int result=0;
vector<vector<bool>>dp(s.size(), vector<bool>(s.size(),false));
for(int i=s.size()-1;i>=0;i--){
for(int j=i;j<=s.size();j++){
if(s[i]==s[j]){
if(j-i<=1){
//情况1和2
result++;
dp[i][j]=true;
}
else if(dp[i+1][j-1]){
//情况3
result++;
dp[i][j]=true;
}
}
}
}
return result;
}
};
16.最长回文子序列
力扣题目链接(opens new window)
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。
示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。
提示:
- 1 <= s.length <= 1000
- s 只包含小写英文字母
思路:回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
如图:
(如果这里看不懂,回忆一下dp[i][j]的定义)
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
加入s[j]的回文子序列长度为dp[i + 1][j]。
加入s[i]的回文子序列长度为dp[i][j - 1]。
那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
初始化:首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。
所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。
其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。
遍历顺序:
递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:
所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的。
j的话,可以正常从左向右遍历。
class Solution {
public:
int longestPalindromeSubseq(string s) {
vector<vector<int>>dp(s.size(), vector<int>(s.size(),0));
for(int i=0;i<s.size();i++) dp[i][i]=1;
for(int i=s.size()-1;i>=0;i--){
for(int j=i+1;j<s.size();j++){
if(s[i]==s[j]){
dp[i][j]=dp[i+1][j-1]+2;
}
else{
dp[i][j]=max(dp[i+1][j], dp[i][j-1]);
}
}
}
return dp[0][s.size()-1];
}
};
参考:代码随想录