【智能算法】秃鹰搜索算法(BES)原理及实现

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2020年, Alsattar等人受到秃鹰猎食自然行为启发,提出了秃鹰搜索算法(Bald Eagle Search,BES)。

2.算法原理

2.1算法思想

BES主要分为三个阶段选择搜索空间、搜索空间猎物和俯冲捕获猎物
在这里插入图片描述

2.2算法过程

选择搜索空间
秃鹰个体在飞行中的位置代表 1个可行解,在选择搜索空间阶段,秃鹰会挑选猎物聚集数量最多的区域当做搜索空间,该阶段的秃鹰行为由如下方程描述:
P i , n e w ( t ) = P b e s t ( t ) + α × r × ( P m e a n ( t ) − P i ( t ) ) (1) P_{i,\mathrm{new}}(t)=P_{\mathrm{best}}(t)+\alpha\times r\times(P_{\mathrm{mean}}(t)-P_{i}(t))\tag{1} Pi,new(t)=Pbest(t)+α×r×(Pmean(t)Pi(t))(1)
其中,Pi,new(t)表示第 i 只秃鹰的更新位置;Pbest(t)表示秃鹰最佳搜索位置;Pmean(t)表示秃鹰之前搜索结束后所有秃鹰个体的平均分布位置,Pi(t)表示第 i只秃鹰的搜索位置,称作领导者;t是当前迭代次数,参数 α∈[1.5,2]是控制秃鹰搜索位置的参数,参数 α 设置为 2;r 是取值范围在 0~1之间的随机数。
搜索空间猎物
秃鹰个体在完成选择目标搜索空间后,会在该搜索空间中对猎物进行“螺旋式”搜索,并向不同的方向飞行移动以加速搜索进程。该阶段的秃鹰行为如下方程描述:
P i , n e w ( t ) = P i ( t ) + x ( i ) × ( P i ( t ) − P m e a n ( t ) ) + y ( i ) × ( P i ( t ) − P i + 1 ( t ) ) x ( i ) = x r ( i ) max ⁡ ( ∣ x r ∣ ) , y ( i ) = y r ( i ) max ⁡ ( ∣ y r ∣ ) x r ( i ) = r ( i ) × sin ⁡ ( θ ( i ) ) , y r ( i ) = r ( i ) × cos ⁡ ( θ ( i ) ) θ ( i ) = a × π × r a n d , r ( i ) = θ ( i ) + R × r a n d (2) \begin{aligned} &P_{i,\mathrm{new}}(t)=P_{i}(t)+x(i)\times(P_{i}(t)-P_{\mathrm{mean}}(t))+y(i)\times \left(P_{i}(t)-P_{i+1}(t)\right) \\ &x(i)=\frac{x_{r}(i)}{\operatorname*{max}(\left|x_{r}\right|)},y(i)=\frac{y_{r}(i)}{\operatorname*{max}(\left|y_{r}\right|)} \\ &x_{_r}(i)=r(i)\times\sin(\theta(i)),y_{_r}(i)=r(i)\times\cos(\theta(i)) \\ &\theta(i)=a\times\pi\times\mathrm{rand},r(i)=\theta(i)+R\times\mathrm{rand} \end{aligned} \tag{2} Pi,new(t)=Pi(t)+x(i)×(Pi(t)Pmean(t))+y(i)×(Pi(t)Pi+1(t))x(i)=max(xr)xr(i),y(i)=max(yr)yr(i)xr(i)=r(i)×sin(θ(i)),yr(i)=r(i)×cos(θ(i))θ(i)=a×π×rand,r(i)=θ(i)+R×rand(2)
其中,x(i)与 y(i)表示极坐标中秃鹰的位置,取值范围均为(-1,1);θ(i)与 r(i)分别表示螺旋方程的极角与极径;a∈[5,10]与 R∈(0.5,2)表示控制秃鹰螺旋飞行轨迹的参数。
俯冲捕获猎物
秃鹰在搜索空间锁定目标猎物后,从最佳位置快速飞行至目标猎物位置,与此同时所有的秃鹰个体也会朝着最佳位置飞行移动。该阶段的秃鹰行为由如下方程描述:
P i , n e w ( t ) = r a n d × P b e s t ( t ) + x 1 ( i ) × ( P i ( t ) − c 1 × P m e a n ( t ) ) + y 1 ( i ) × ( P i ( t ) − c 2 × P b e s t ( t ) ) x 1 ( i ) = x r ( i ) max ⁡ ( ∣ x r ∣ ) , y 1 ( i ) = y r ( i ) max ⁡ ( ∣ y r ∣ ) x r ( i ) = r ( i ) × sinh ⁡ ( θ ( i ) ) , y r ( i ) = r ( i ) × cosh ⁡ ( θ ( i ) ) θ ( i ) = a × π × r a n d , r ( i ) = θ ( i ) (3) \begin{aligned} &&&P_{i,new}(t)=\mathrm{rand}\times P_{\mathrm{best}}(t)+x_{1}\left(i\right)\times\left(P_{i}(t)-c_{1}\times P_{\mathrm{mean}}(t)\right)+ y_{1}\left(i\right)\times\left(P_{i}(t)-c_{2}\times P_{\mathrm{best}}(t)\right) &&&& \\ &&&x_{1}\left(i\right)=\frac{x_{r}\left(i\right)}{\operatorname*{max}(\left|x_{r}\right|)},y_{1}\left(i\right)=\frac{y_{r}\left(i\right)}{\operatorname*{max}(\left|y_{r}\right|)}&& \\ &&&x_{r}(i)=r(i)\times\sinh\left(\theta(i)\right),y_{r}(i)=r(i)\times\cosh\left(\theta(i)\right)&& \\ &&&\theta(i)=a\times\pi\times\mathrm{rand},r(i)=\theta(i)&& \end{aligned}\tag{3} Pi,new(t)=rand×Pbest(t)+x1(i)×(Pi(t)c1×Pmean(t))+y1(i)×(Pi(t)c2×Pbest(t))x1(i)=max(xr)xr(i),y1(i)=max(yr)yr(i)xr(i)=r(i)×sinh(θ(i)),yr(i)=r(i)×cosh(θ(i))θ(i)=a×π×rand,r(i)=θ(i)(3)
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Alsattar H A, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53: 2237-2264.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/487490.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一篇复现Docker镜像操作与容器操作

华子目录 Docker镜像操作创建镜像方式1docker commit示例 方式2docker import示例1:从本地文件系统导入示例2:从远程URL导入注意事项 方式3docker build示例1:构建镜像并指定名称和标签示例2:使用自定义的 Dockerfile 路径构建镜像…

SiteServer 学习笔记 Day01 新增站点字段和获取站点字段

1、站点字段设置,在站点下选择设置管理->字段设置->站点字段设置。新增字段,Iphone、welcome、moblie、email,如下图所示: 2、查看内容字段设置,设置管理->字段设置->内容字段设置。新建站点后&#xff0c…

docker的部署与安装以及部署一个docker(容器)应用及docker容器常出现的问题

docker 架构图 一、docker的部署与安装 1、在 CentOS 上安装 Docker 移除旧版本(如果有的话):sudo yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-…

TCP重传机制详解——04FACK

文章目录 TCP重传机制详解——04FACK什么是FACKFACK的发展为什么要引入FACK实战抓包讲解开启FACK场景,且达到dup ACK门限值开启FACK场景,未达到dup ACK门限值 为什么要淘汰FACK总结REF TCP重传机制详解——04FACK 什么是FACK FACK的全称是forward ackn…

如果出现虚拟机与此版本VMware版本不兼容问题,的解决方法

问题样式: 解决方法与步骤: 1.右击虚拟机 ————》管理 ————》更改硬件兼容性 2.再弹出的页面中点击下一步 ————》下一步 3.再这个页面点击更改此虚拟机 ————》下一步 然后就可以愉快的使用虚拟机了

计算机复试面试问答准备(未完)

目录 1、理解多态性2、怎么逆置⼀个链表3、顺序表和链表的区别4、树的存储结构5、什么是哈夫曼树?简述哈夫曼树的构造过程。介绍哈夫曼树的特性。6、哈夫曼编码的编码和解码过程7、图的遍历方式8、图的存储方式9、最小生成树10、迪杰斯特拉算法11、佛洛依德算法12、…

ssm005基于SSM框架的购物商城系统+jsp

购物商城系统的设计与实现 摘 要 网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就…

Python利用Turtle小乌龟实现推箱子游戏

文章目录: 一:运行效果 1.演示 2.思路和功能 二:代码 文件架构 level.py PushBox.py 必备知识:python图形化编程turtle小乌龟 一:运行效果 1.演示 效果图◕‿◕✌✌✌ Python利用Turtle小乌龟实现推箱子游戏运…

软件设计师笔记

计算机 运算器组成:算术逻辑单元(ALU)、累加寄存器(AC)、数据缓冲寄存器(DR)、状态条件寄存器()等组成。 控制器组成:指令寄存器(IR)、程序计数器(PC)、地址寄存器(AR)、指令译码器(ID)。 最小数据单位:bit 最小存储单位: byte n进制 转 1…

【工作中问题解决实践 十二】线上如何排查CPU100%的情况

当我们把服务发布到服务器器,可能会因为一些问题造成我们的服务器CPU被打满甚至超过100%,那如果我们想知道到底上在做什么操作导致CPU持续过高呢?因为在线上只能通过日志看问题,或者排查到哪个进程或者哪个线程持续占用CPU。然后才…

基于java+springboot+vue实现的医院门诊信息管理系统(文末源码+Lw+ppt)23-325

摘 要 系统根据现有的管理模块进行开发和扩展,采用面向对象的开发的思想和结构化的开发方法对医院门诊信息的现状进行系统调查。采用结构化的分析设计,该方法要求结合一定的图表,在模块化的基础上进行系统的开发工作。在设计中采用“自下而…

c++翁恺

1、面向对象 Data:杯子的属性 Opera:杯子提供的服务 老师上课: C:按流程执行 C:定一个教室,有很多学生,投影仪,灯,每个学生反映不一样。 这个场景有什么东西&#xff0c…

SSM整合遇到的问题,非常干货,希望能帮助到您~

你们好,我是金金金。 无法自动装配 配置类已经配置了扫描 那是什么原因导致? 解决 很明显位置都不在一起,需要更改。 结果类型不匹配select id“selectEmployeeByCondition” 什么原因导致? 这个是因为我建立了很多子模块 名字…

基于tcp协议的网络通信(将服务端守护进程化)

目录 守护进程化 引入 介绍 如何实现 思路 接口 -- setsid 注意点 实现代码 daemon.hpp log.hpp 运行情况 前情提要 -- 前后台任务介绍(区别命令),sessionsid介绍,session退出后的情况(nuhup,终端进程控制组),任务进程组概念,任务与进程组的关系,-bash介绍-CSDN博客…

最详细的ubuntu 安装 docker教程

Docker是一种流行的容器化平台,它能够简化应用程序的部署和管理。本文将介绍在Ubuntu操作系统上安装Docker的步骤,以便我们可以开始使用Docker来构建和运行容器化应用程序。 系统版本 本文以Ubuntu20.05系统为例安装docker,Ubuntu官方下载地…

输出当前时间

用途:在项目中一些属性中设置当前时间 实例代码 import java.time.LocalDateTime; import java.time.format.DateTimeFormatter;public class time {public static void main(String[] args){LocalDateTime china LocalDateTime.now(); DateTimeFormatter forma…

函数作用域和块级作用域:JavaScript中的变量作用域解析

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

知识图谱操作的探索与利用

目录 前言1 搜索(Search)1.1 基于关键词搜索1.2 属性搜索1.3 模式匹配 2 过滤(Filtering)2.1 属性过滤2.2 关系过滤 3 引导(Guidance)3.1 相关实体推荐3.2 路径推荐 4 合并(Merging)…

OpenLayers基础教程——WebGLPoints图层样式的设置方法

1、前言 前一篇博客介绍了如何在OpenLayers中使用WebGLPoints加载海量数据点的方法,这篇博客就来介绍一下WebGLPoints图层的样式设置问题。 2、样式运算符 在VectorLayer图层中,我们只需要创建一个ol.style.Style对象即可,WebGLPoints则不…

【c++】类和对象(三)构造函数和析构函数

🔥个人主页:Quitecoder 🔥专栏:c笔记仓 朋友们大家好,本篇文章我们带来类和对象重要的部分,构造函数和析构函数 目录 1.类的6个默认成员函数2.构造函数2.1构造函数其他特性 3.构析函数3.1特性:…