YOLOv9改进策略:卷积魔改 | DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测 | CVPR2024

 💡💡💡本文改进内容: DCNv4来自CVPR2024 的论文,它不仅收敛速度明显快于DCNv3,而且正向速度提高了3倍以上。这一改进使DCNv4能够充分利用其稀疏特性,成为最快的通用核心视觉算子之一。

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.DCNv4介绍 

论文: https://arxiv.org/pdf/2401.06197.pdf

摘要:我们介绍了可变形卷积v4 (DCNv4),这是一种高效的算子,专为广泛的视觉应用而设计。DCNv4通过两个关键增强解决了其前身DCNv3的局限性:去除空间聚合中的softmax归一化,增强空间聚合的动态性和表现力;优化内存访问以最小化冗余操作以提高速度。与DCNv3相比,这些改进显著加快了收敛速度,并大幅提高了处理速度,其中DCNv4的转发速度是DCNv3的三倍以上。DCNv4在各种任务中表现出卓越的性能,包括图像分类、实例和语义分割,尤其是图像生成。当在潜在扩散模型中与U-Net等生成模型集成时,DCNv4的性能优于其基线,强调了其增强生成模型的可能性。在实际应用中,将InternImage模型中的DCNv3替换为DCNv4来创建FlashInternImage,无需进一步修改即可使速度提高80%,并进一步提高性能。DCNv4在速度和效率方面的进步,以及它在不同视觉任务中的强大性能,显示了它作为未来视觉模型基础构建块的潜力。

图1所示。(a)我们以DCNv3为基准显示相对运行时间。DCNv4比DCNv3有明显的加速,并且超过了其他常见的视觉算子。(b)在相同的网络架构下,DCNv4收敛速度快于其他视觉算子,而DCNv3在初始训练阶段落后于视觉算子。

        为了克服这些挑战,我们提出了可变形卷积v4 (DCNv4),这是一种创新的进步,用于优化稀疏DCN算子的实际效率。DCNv4具有更快的实现速度和改进的操作符设计,以增强其性能,我们将详细说明如下:
        首先,我们对现有实现进行指令级内核分析,发现DCNv3已经是轻量级的。计算成本不到1%,而内存访问成本为99%。这促使我们重新审视运算符实现,并发现DCN转发过程中的许多内存访问是冗余的,因此可以进行优化,从而实现更快的DCNv4实现。
        其次,从卷积的无界权值范围中得到启发,我们发现在DCNv3中,密集关注下的标准操作——空间聚合中的softmax归一化是不必要的,因为它不要求算子对每个位置都有专用的聚合窗口。直观地说,softmax将有界的0 ~ 1值范围放在权重上,并将限制聚合权重的表达能力。这一见解使我们消除了DCNv4中的softmax,增强了其动态特性并提高了其性能。
因此,DCNv4不仅收敛速度明显快于DCNv3,而且正向速度提高了3倍以上。这一改进使DCNv4能够充分利用其稀疏特性,成为最快的通用核心视觉算子之一。

        我们进一步将InternImage中的DCNv3替换为DCNv4,创建FlashInternImage。值得注意的是,与InternImage相比,FlashInternImage在没有任何额外修改的情况下实现了50 ~ 80%的速度提升。这一增强定位FlashInternImage作为最快的现代视觉骨干网络之一,同时保持卓越的性能。在DCNv4的帮助下,FlashInternImage显著提高了ImageNet分类[10]和迁移学习设置的收敛速度,并进一步提高了下游任务的性能。

图2。(a)注意力(Attention)和(b) DCNv3使用有限的(范围从0 ~ 1)动态权值来聚合空间特征,而注意力的窗口(采样点集)是相同的,DCNv3为每个位置使用专用的窗口。(c)卷积对于聚合权值具有更灵活的无界值范围,并为每个位置使用专用滑动窗口,但窗口形状和聚合权值是与输入无关的。(d) DCNv4结合两者的优点,采用自适应聚合窗口和无界值范围的动态聚合权值。

图3。说明我们的优化。在DCNv4中,我们使用一个线程来处理同一组中的多个通道,这些通道共享采样偏移量和聚合权重。可以减少内存读取和双线性插值系数计算等工作负载,并且可以合并多个内存访问指令。

3.DCNv4加入到YOLOv9

3.1新建py文件,路径为models/conv/dcnv4.py

后续更新

3.2修改yolo.py

1)首先进行引用

from models.conv.dcnv4 import *

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入Bottleneck_DCNV4

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
            Conv, AConv, ConvTranspose, 
            Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
            RepNCSPELAN4, SPPELAN,Bottleneck_DCNV4}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]

3.3 yolov9-c-Bottleneck_DCNV4.yaml

# YOLOv9
 
# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
 
# anchors
anchors: 3
 
# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
 
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
 
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
 
   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
 
   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
 
   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
   
   [-1, 1, Bottleneck_DCNV4, [512,512]],  # 10
  ]
 
# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 11
 
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14
 
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)
 
   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)
 
   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 24
   [7, 1, CBLinear, [[256, 512]]], # 25
   [9, 1, CBLinear, [[256, 512, 512]]], # 26
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 27-P1/2
 
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 28-P2/4
 
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29
 
   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 30-P3/8
   [[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31  
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32
 
   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 33-P4/16
   [[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34 
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35
 
   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 36-P5/32
   [[26, -1], 1, CBFuse, [[2]]], # 37
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38
   
   
   
   # detection head
 
   # detect
   [[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

3.4 如何编译dcnv4

源码下载

下载链接:GitHub - OpenGVLab/DCNv4: [CVPR 2024] Deformable Convolution v4

将 DCNv4_op文件夹放入models\nn目录下

在DCNv4_op文件夹下执行以下命令:

python setup.py build install

编译通过

3.5 报错解决

报错如下

    output = ext.dcnv4_forward(*args)
RuntimeError: Not implemented on the CPU

 if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            #forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualSegment, DualPanoptic)) else self.forward(x)[0]
            forward = lambda x: self.forward(x)[0]
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            # check_anchor_order(m)
            # m.anchors /= m.stride.view(-1, 1, 1)
            self.stride = m.stride
            m.bias_init()  # only run once

 m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward

替换为

            self.model.to(torch.device('cuda'))
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s).to(torch.device('cuda')))])  # forward
            self.model.cpu()

 3.6 实验中,待更新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/486845.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CDP7 下载安装 Flink Percel 包

下载链接:https://www.cloudera.com/downloads/cdf/csa-trial.html 点击后选择版本, 然后点击download now,会有一个协议,勾选即可,然后就有三个文件列表, 我这里是已经注册登录的状态,如果没…

继承和多态(2)(多态部分)

提前讲的重要知识点 一个类在没有父类的情况下默认有一个父类为Object类。 而当在有父类情况下,如果你那父类没有父类,则其父类的父类默认为object类,所以即使一个类有父类,其内部还是有object类。 object类都是隐藏起来的&…

谈一谈BEV和Transformer在自动驾驶中的应用

谈一谈BEV和Transformer在自动驾驶中的应用 BEV和Transformer都这么火,这次就聊一聊。 结尾有资料连接 一 BEV有什么用 首先,鸟瞰图并不能带来新的功能,对规控也没有什么额外的好处。 从鸟瞰图这个名词就可以看出来,本来摄像头…

msvcp110.dll丢失修复办法

在计算机使用过程中,我们经常会遇到一些扩展名为.dll的文件,这些文件是动态链接库文件,用于提供程序运行时所需的函数和资源。其中,msvcp110.dll文件是一个非常重要的动态链接库文件,它属于Microsoft Visual C 2012 Re…

学习数据结构:算法的时间复杂度和空间复杂度

一、算法的复杂度 衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。 算法的时间复杂度 算法中的基本操作的…

Earth Hour地球一小时

在刚刚过去的周六(2024-03-23)是个特殊的日子,你知道是什么日子吗? 对,是地球一小时 活动日。 地球一小时”是让全球关心自然、热心环保的人可以共同发声的平台。 当地时间2024年3月23日晚8点30分,“地球…

【保姆级讲解Redis基础命令】

🌈🌈🌈个人主页:程序员不想敲代码啊🌈🌈🌈 💫CSDN优质创作者,CSDN实力新星 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处&#xff0c…

YZ系列工具之YZ09: VBA_Excel之读心术

我给VBA下的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套一部VBA手册,教程分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的…

全自动挂机引流,客户主动上门的秘密武器!

流量一直是各个行业的难题,无论在实体店还是在线行业。只有不断获取大量的流量,才能更好的进行商业变现和扩展。那么,有没有一款能实现全自动挂机引流的软件呢?答案是肯定的。下面就由我以自身的经验来介绍一下这款全自动挂机引流…

(bug2总结)-mysql 字段为varchar,用int去查的时候可能会多返回数据

场景:表结构和数据如下图 查询语句如下 总结: mysql 字段为varchar,用int去查的时候可能会多返回数据。mysql版本为5.7.4

混合像元分解:Matlab如何帮助揭示地表组成?

光谱和图像是人们观察世界的两种方式,高光谱遥感通过“图谱合一”的技术创新将两者结合起来,大大提高了人们对客观世界的认知能力,本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。以高光谱遥感为核心,构建…

YOLOv9改进策略:IoU优化 | Powerful-IoU更好、更快的收敛IoU,效果秒杀CIoU、GIoU等 | 2024年最新IoU

💡💡💡本文独家改进:Powerful-IoU更好、更快的收敛IoU,是一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数 💡💡💡MS COCO和PASCAL VOC数据集实现涨点 YO…

BASE64加密解密(两种方式)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

Visio导出高质量图片

直接导出图片比较糊, 在导出高质量图片,应该 直接保存,然后弹出此选项,进行如下设置 即可导出高质量图片

羊大师分析春季喝羊奶,滋养正当时!

羊大师分析春季喝羊奶,滋养正当时! 随着春天的到来,大地万物复苏,生机勃勃。在这个充满希望的季节里,我们的身体也需要得到充分的滋养与呵护。而羊奶,作为一种营养丰富、口感醇厚的奶制品,无疑…

[NOIP2013 普及组] 车站分级

抽象出差分约束 然后还有一点就是建立超级源点 优化建图 然后就是比较有趣的拓扑图求差分约束了其实spfa也可 #include<bits/stdc.h> using namespace std; using ll long long;const int N 2e610; const int inf 0x3f3f3f3f; const int mod 1e97;int n,q,m;int e[N…

3月份的倒数第二个周末有感

坐在图书馆的那一刻&#xff0c;忽然感觉时间的节奏开始放缓。今天周末因为我们两都有任务需要完成&#xff0c;所以就选了嘉定图书馆&#xff0c;不得不说嘉定新城远香湖附近的图书馆真的很有感觉。然我不经意回想起学校的时光&#xff0c;那是多么美好且短暂的时光。凝视着窗…

红黑树进阶:正向与反向迭代器的实现及map、set的封装实践

文章目录 一、引言二、红黑树迭代器设计1、迭代器的基本概念和分类2、正向迭代器设计a.迭代器结构定义b.迭代器的 与 -- 3、反向迭代器设计a.反向迭代器的必要性b.反向迭代器的实现要点 4、红黑树封装迭代器 三、使用红黑树实现Map四、红黑树实现Set五、细节理解1、 typname的使…

【超图 SuperMap3D】【基础API使用示例】51、超图SuperMap3D - 绘制圆|椭圆形面标注并将视角定位过去

前言 引擎下载地址&#xff1a;[添加链接描述](http://support.supermap.com.cn/DownloadCenter/DownloadPage.aspx?id2524) 绘制圆形或者椭圆形效果 核心代码 entity viewer.entities.add({// 圆中心点position: { x: -1405746.5243351874, y: 4988274.8462937465, z: 370…

Web漏洞-SQL注入之二次、加密、DNS加密注入

实例1&#xff1a;sqli-labs21 输入admin&#xff0c;admin 测试&#xff1a; 可以看到注入点在cookie处&#xff0c;发送到decoder&#xff08;解密&#xff09; 所以如果要注入&#xff0c;需要将注入语句加密 Eg&#xff1a;admin’ and 11加密后&#xff1a;YWRtaW4ZIGFu…