详解机器学习概念、算法

目录

前言

一、常见的机器学习算法

二、监督学习和非监督学习

三、常见的机器学习概念解释

四、深度学习与机器学习的区别

基于Python 和 TensorFlow 深度学习框架实现简单的多层感知机(MLP)神经网络的示例代码:


欢迎三连哦!

前言

机器学习是一种人工智能(AI)的分支,致力于开发算法和技术,使计算机系统能够从数据中学习并改进性能,而无需明确地进行编程。它的核心思想是通过训练模型来识别数据中的模式和规律,然后利用这些模型进行预测和决策。机器学习通常涉及以下几个关键方面:

1. 数据:机器学习的基础是数据。数据可以是结构化的(例如表格数据)或非结构化的(例如文本、图像、音频等)。这些数据用于训练模型。

2. 模型:模型是机器学习算法的核心组成部分。模型通过学习数据中的模式和规律来进行预测或分类。常见的机器学习模型包括线性回归、决策树、支持向量机、神经网络等。

3. 训练:训练模型是指使用已知数据来调整模型的参数,使其能够更好地适应数据中的模式和规律。训练通常包括优化模型的损失函数,以使模型的预测结果尽可能接近实际值。

4. 测试和评估:一旦模型训练完成,就需要对其进行测试和评估,以确保其在未见过的数据上具有良好的泛化能力。这通常涉及将模型应用于测试数据集,并计算模型的性能指标,如准确率、精确率、召回率等。

5. 预测和决策:训练好的模型可以用于进行预测和决策,根据输入数据生成输出结果。这些输出结果可以用于各种应用,如推荐系统、图像识别、自然语言处理、医疗诊断等。

一、常见的机器学习算法

1. 线性回归(Linear Regression):用于建模输入变量与连续输出变量之间的关系。

2. 逻辑回归(Logistic Regression):用于建模输入变量与二元分类输出变量之间的关系。

3. 决策树(Decision Trees):基于树形结构进行决策,可用于分类和回归任务。

4. 随机森林(Random Forests):集成学习方法,通过组合多个决策树来提高预测性能。

5. 支持向量机(Support Vector Machines,SVM):用于分类和回归任务,通过寻找一个最优的超平面来实现分类或回归。

6. K近邻算法(K-Nearest Neighbors,KNN):基于邻近样本的特征进行分类或回归。

7. 朴素贝叶斯(Naive Bayes):基于贝叶斯定理和特征之间的独立假设进行分类。

8. 神经网络(Neural Networks):由多个神经元组成的网络结构,通过多层神经元之间的连接进行学习和预测。

9. 聚类算法(Clustering Algorithms):将数据分成不同的组或簇,常见的算法包括K均值聚类和层次聚类。

10. 主成分分析(Principal Component Analysis,PCA):用于降低数据维度和特征提取。

二、监督学习和非监督学习

监督学习和非监督学习是机器学习中两种主要的学习范式,它们之间的区别在于学习过程中是否有标记的训练数据。

  1. 监督学习(Supervised Learning)

    • 在监督学习中,训练数据包含了输入和对应的输出标签。
    • 模型的任务是学习从输入到输出的映射关系,即学习如何从输入数据预测出相应的输出标签。
    • 监督学习适用于分类和回归等任务,其中分类任务的输出是离散的类别标签,而回归任务的输出是连续的数值。
    • 常见的监督学习算法包括线性回归、逻辑回归、决策树、支持向量机等。
  2. 非监督学习(Unsupervised Learning)

    • 在非监督学习中,训练数据不包含输出标签,模型需要自行发现数据中的模式和结构。
    • 模型的任务通常是在没有标签的情况下对数据进行聚类、降维或异常检测等操作。
    • 非监督学习适用于对数据进行探索性分析、发现隐藏结构以及理解数据的特点。
    • 常见的非监督学习算法包括K均值聚类、层次聚类、主成分分析(PCA)等。

三、常见的机器学习概念解释

常见的机器学习概念:

  1. 特征(Features):在机器学习中,特征是指描述数据的属性或变量。特征可以是数值型、分类型或者其他类型的数据。

  2. 标签(Labels):在监督学习中,标签是与输入数据相关联的输出变量或结果。标签通常是需要预测或分类的目标变量。

  3. 模型(Model):模型是根据训练数据学习到的规律和模式的表示。在预测或分类新数据时,模型根据输入特征生成相应的输出。

  4. 训练(Training):训练是指使用标记的训练数据来调整模型的参数或权重,以便模型能够从数据中学习并提高性能。

  5. 测试(Testing):测试是在训练完成后评估模型性能的过程。测试数据与训练数据不同,用于评估模型在未见过的数据上的泛化能力。

  6. 损失函数(Loss Function):损失函数(Loss Function)是用来衡量模型预测结果与实际标签之间的差异的函数。损失函数是优化算法的核心,其目标是最小化损失函数,从而使模型的预测尽可能接近实际值。选择适当的损失函数取决于问题的性质和所需的模型行为。

  7. 优化算法(Optimization Algorithm):优化算法用于调整模型的参数以最小化损失函数。常见的优化算法包括梯度下降法、随机梯度下降法等。

  8. 过拟合(Overfitting)过拟合指模型在训练数据上表现很好,但在未见过的数据上表现较差的现象。过拟合通常发生在模型过于复杂或训练数据量过少时。

  9. 欠拟合(Underfitting):欠拟合指模型未能在训练数据上学习到足够的模式或规律,导致其在训练和测试数据上表现均不理想的现象。

  10. 交叉验证(Cross-validation):交叉验证是一种评估模型性能的方法,它将训练数据分成多个子集,然后多次训练和测试模型,最终汇总评估模型的性能。

  1. 过拟合(Overfitting)

    • 过拟合指模型在训练数据上表现很好,但在未见过的数据上表现较差的现象。
    • 过拟合通常发生在模型过于复杂或者训练数据量不足时。
    • 过拟合的表现包括模型对训练数据中的噪声过度拟合、模型参数过多、模型复杂度过高等。
    • 过拟合可能导致模型在真实世界中的泛化能力差,即在新数据上的表现不佳。
  2. 欠拟合(Underfitting)

    • 欠拟合指模型未能在训练数据上学习到足够的模式或规律,导致其在训练和测试数据上表现均不理想的现象。
    • 欠拟合通常发生在模型过于简单或者数据特征未能充分提取时。
    • 欠拟合的表现包括模型无法捕捉数据的复杂关系、模型参数过少、模型复杂度过低等。
    • 欠拟合可能导致模型在训练数据和测试数据上的性能都较差,无法有效地进行预测或分类。

解决过拟合和欠拟合问题的方法各有不同:

  • 过拟合的解决方法

    • 增加训练数据量,以更好地反映真实数据的分布。
    • 简化模型,减少模型的复杂度,如减少参数数量、减少隐藏层的数量或神经元的数量等。
    • 使用正则化方法,如L1正则化(Lasso)或L2正则化(Ridge)来约束模型参数的大小。
    • 使用早停法(Early Stopping),在模型在验证集上性能开始下降时停止训练,以防止过度拟合。
  • 欠拟合的解决方法

    • 增加模型复杂度,如增加模型的参数数量、增加模型的隐藏层数量或神经元的数量等。
    • 增加特征数量,包括添加新的特征或通过特征工程提取更多的特征。
    • 减少正则化程度,如降低正则化参数的值,以允许模型更好地拟合训练数据。

四、深度学习与机器学习的区别

深度学习算法是机器学习算法的一种特殊类型,它们之间的主要区别在于模型的结构和学习方式。

  1. 模型结构

    • 传统的机器学习算法通常依赖于手工设计的特征提取器和模型结构,例如决策树、支持向量机等。这些算法对特征的选择和提取通常依赖于专家知识或经验。
    • 而深度学习算法则通过多层神经网络模型来自动学习数据的表示。这些模型由多个神经元组成的层级结构,可以从原始数据中学习到更加高级和抽象的特征表示。
  2. 特征表示

    • 传统机器学习算法通常依赖于手工选择和提取的特征,这些特征通常需要领域知识或专业经验来确定。
    • 而深度学习算法通过学习数据的表示来自动发现特征,它们可以在原始数据中学习到更加复杂和抽象的特征表示,无需人工干预。
  3. 学习方式

    • 传统机器学习算法通常使用基于梯度下降等优化算法来最小化损失函数,从而调整模型参数以优化性能。
    • 深度学习算法也使用类似的优化算法进行训练,但由于深度神经网络的复杂性,通常需要更大规模的数据和计算资源来训练。
  4. 应用领域

    • 传统机器学习算法在许多领域都有广泛的应用,包括文本分类、图像识别、推荐系统等。
    • 深度学习算法在近年来在许多领域取得了突破性的进展,特别是在计算机视觉、自然语言处理、语音识别等领域。

基于Python 和 TensorFlow 深度学习框架实现简单的多层感知机(MLP)神经网络的示例代码:

# 导入必要的库
import numpy as np
import tensorflow as tf
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# 生成一些示例数据
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)

# 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义神经网络模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=(20,)),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid')
])

# 编译模型
model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

# 在测试集上评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("测试集上的损失:", loss)
print("测试集上的准确率:", accuracy)

代码使用 TensorFlow 框架来构建、训练和评估一个简单的多层感知机神经网络。首先,我们生成了一些示例数据,然后将数据分为训练集和测试集。接下来,我们定义了一个包含多个密集层的神经网络模型,并编译了该模型。然后,我们使用训练集来训练模型,并在训练过程中使用测试集来验证模型的性能。最后,我们在测试集上评估了模型的损失和准确率。

基于PyTorch 实现数字识别的示例代码,该示例使用了手写数字数据集 MNIST:

# 导入必要的库
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt

# 设置随机种子
torch.manual_seed(0)

# 定义超参数
batch_size = 100
learning_rate = 0.001
num_epochs = 5

# 加载并预处理数据集
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transform, download=True)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 定义神经网络模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2)
        self.relu1 = nn.ReLU()
        self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2)
        self.relu2 = nn.ReLU()
        self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc = nn.Linear(7*7*32, 10)
        
    def forward(self, x):
        out = self.conv1(x)
        out = self.relu1(out)
        out = self.maxpool1(out)
        out = self.conv2(out)
        out = self.relu2(out)
        out = self.maxpool2(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out

# 实例化模型和损失函数
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        outputs = model(images)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 测试模型
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('在10000张测试集上的准确率为: {} %'.format(100 * correct / total))

使用 PyTorch 构建一个简单的卷积神经网络(CNN)模型来实现手写数字识别。首先,我们加载并预处理了 MNIST 数据集,然后定义了一个简单的 CNN 模型。接着,我们定义了损失函数(交叉熵损失)和优化器(Adam),并利用训练集对模型进行训练。最后,我们使用测试集对模型进行评估,计算了模型在测试集上的准确率。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/485869.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 1027——最长等差数列

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 假设我们以 f[d][nums[i]]表示以 nums[i] 为结尾元素间距为 d 的等差数列的最大长度,那么,如果 nums[i]-d 也存在于 nums 数组中,则有: f [ d ] [ n u m s [ i ] ] …

我们是如何测试人工智能的(八)包含大模型的企业级智能客服系统拆解与测试方法 -- 大模型 RAG

大模型的缺陷 -- 幻觉 接触过 GPT 这样的大模型产品的同学应该都知道大模型的强大之处, 很多人都应该调戏过 GPT,跟 GPT 聊很多的天。 作为一个面向大众的对话机器人,GPT 明显是鹤立鸡群,在世界范围内还没有看到有能跟 GPT 扳手腕…

武汉星起航引领跨境电商新纪元,助力卖家扬帆远航全球市场

在全球化的商业浪潮中,跨境电商行业异军突起,成为连接全球市场的重要纽带。亚马逊,作为全球零售电商的巨擘,为无数卖家提供了走向国际市场的广阔舞台。在这片充满机遇与挑战的蓝海中,武汉星起航电子商务有限公司以其独…

数字孪生技术在农业领域的应用

数字孪生技术在农业领域的应用,不仅能够提高农业生产的智能化水平,还能够促进农业资源的高效利用和农业环境的可持续发展。随着技术的不断进步和应用的深入,数字孪生将在农业领域发挥越来越重要的作用。数字孪生技术在农业领域的应用主要集中…

redis连接工具 windows版安装和redis命令

Redis是一个开源的使用C语言编写、支持网络、基于内存、可持久化的日志型、Key-Value数据库,并提供多种语言的API。 一、redis-windows版安装 在D盘符下新建个目录,把下载的绿色安装包放在该目录。 D:\Files Java\Redis-x64-3.2.100 解压到当前目录 …

跳蚱蜢(蓝桥杯)

文章目录 跳蚱蜢题目描述答案:20bfs 跳蚱蜢 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 如下图所示: 有 9 只盘子,排成 1 个圆圈。 其中 8 只盘子内装着 8 只蚱蜢&#xff…

【单例测试】Mockito实战

目录 一、项目介绍二、业务代码2.1 导入依赖2.2 entity2.3 Dao2.4 业务代码 三、单元测试3.1 生成Test方法3.2 引入测试类3. 3 测试前准备3.4 测试3.4.1 name和phone参数校验3.4.2 测试数据库访问 3.4.3 数据库反例 总结 前面我们提到了《【单元测试】一文读懂java单元测试》 简…

【Redis教程0x04】详解Redis的4个高级数据类型

引言 在【Redis教程0x03】中,我们介绍了Redis中常用的5种基础数据类型,我们再来回顾一下它们的使用场景: String:存储对象、url、计数、分布式锁;List:消息队列;Hash:存储对象、购…

【Arxml专题】-29-使用Cantools将CAN Matrix Arxml自动生成C语言代码

目录 1 安装Python和Cantools 1.1 查看Python已安装的Package包 1.2 在Python中安装Cantools插件包 1.3 获取更多Cantools工具的更新动态 2 CAN Matrix Arxml自动生成C语言代码 2.1 批处理文件CAN_Matrix_Arxml_To_C.bat内容说明 2.2 CAN Matrix Arxml文件要求 2.3 如何…

JAVA 学习记录(1)

1.函数 (1)String.join(";", messages); ";" 表示分隔符,输出的结果: message; (2) Double.parseDouble(valueString); 它返回由字符串参数表示的双精度值。 (3) Double.valueOf((Float) value; float 类型的数值转化为double类…

UG NX二次开发(C#)-通过曲线组生成NURBS曲面

文章目录 1、前言2、UG NX中通过曲线组生成NURBS曲面的操作3、采用NXOpen C#方法的源代码1、前言 在UG NX中,曲线、曲面的操作使用比较多,对于创建NURBS曲面,可以通过曲线组来生成,本文以NXOpen C#的方法实现通过曲线组生成NURBS曲面的功能。对于UG NX二次开发感兴趣或者有…

-bash: ./1.sh: /bin/bash^M: bad interpreter: No such file or directory解决方法

1、执行脚本 ./1.sh时报如下错误 -bash: ./1.sh: /bin/bash^M: bad interpreter: No such file or directory 2、在Windows编辑的脚本导入Linux系统中,执行报错问题 yum install -y dos2unix 3、或者本地安装 rpm -ivh /mnt/Packages/dos...... 4、然…

springboot 中Aop注解切面实现收集日志与统计耗时2

一 Aop注解实现切面 1.1 工程结构 Before:前置通知, 在方法执行之前执行 Aroud:环绕通知, 围绕着方法执行 After:后置通知, 在方法执行之后执行 AfterReturning:返回通知, 在方法返回结果之后执行 AfterThrowing:异…

【软考高项】十七、项目管理概论之项目基本要素

1、项目基础 项目具备的一些要素: 1)独特的产品、服务或成果 开展项目是为了通过可交付成果达成目标。 ◆ 目标 是所指向的结果、要取得的战略地位、要达到的目的、要获得的成果、要生产 的产品或者要提供的服务 ◆ 可交付成果 是指在某一过程、阶…

【STK】手把手教你利用STK进行导弹和反导仿真01 - STK/MMT模块安装部署

【STK】手把手教你利用STK进行导弹和反导仿真01 - STK/MMT模块安装部署 MMT模块与STK的版本是一一对应的,比如我现在手上的版本是MMT9的,那么我使用的STK的版本也必须是9版本的,如果你现在正在使用的是更高版本的STK,比如说10、11.2、11.6、12.2,那么该怎么办呢? 这个经本…

基于ssm的学生选课管理系统的设计与实现

一、功能介绍 管理员功能分析 1、管理员用户可以查询所有学生信息,也可以根据学生的学号、学院、专业、班级查询学生信息。可以修改学生的姓名、年龄、身份证号、性别、密码、专业、学院、班级,可以增加、删除学生 2、管理员用户可以查询所有教师信息&…

使用python实现布丰投针法

对于π的值,直到1946年的时候,人类才能将π的值精确计算到小数点后2037位,而现在的超级计算机的能力可以精确的计算到小数点后几十亿位,然而在计算机发明之前,还是使用这里的布丰投针法来计算π值,是最实用…

React antd中下拉框联动没有清除上一次选中的内容

bug&#xff1a; 第一次&#xff1a; 第二次&#xff1a; 解决方法&#xff1a; <Fotm.item> <SelectshowSearchplaceholder"请输入单位名称"filterOption{selectFilterOption}options{bmSelectOptions}onChange{handleDwmcChange}/></F…

非平坦地形下运动规划相关理论

1.SVD平面拟合方法 空间中的离散点得到拟合平面&#xff0c;其实就是一个最优化的过程。即求这些点到某个平面距离和最小的问题。我们知道一个先验消息&#xff0c;那就是该平面一定会过众散点的平均值。接着我们需要做的工作就是求这个平面的法向量。 根据协方差矩阵的SVD变换…

WiFi已连接却不可上网是什么原因?

很多使用wifi上网的用户都遇到过这样的问题,就是电脑已经连接了wifi,但就是上不了网。着到底是怎么回事呢?今天,极客狗带大家一起来找找WiFi已连接却不可上网是什么原因,并给出对应的解决方。 原因分析: 可能是ip地址冲突所导致,也有可能是宽带出先故障,不妨试试下面的…