C# Onnx Yolov9 Detect 物体检测

目录

介绍

效果

项目

模型信息

代码

下载 


C# Onnx Yolov9 Detect 物体检测

介绍

yolov9 github地址:https://github.com/WongKinYiu/yolov9

Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

效果

项目

模型信息

Model Properties
-------------------------
stride:32
names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 84, 8400]
name:1876
tensor:Float[1, 84, 8400]
---------------------------------------------------------------

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov9_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            // 图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            // input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);

            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new DetectionResult(classer_path, factors);
            result_image = result_pro.draw_result(result_pro.process_result(result_array), image.Clone());
            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            }
            else
            {
                textBox1.Text = "无信息";
            }
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = startupPath + "\\yolov9-c.onnx";
            classer_path = startupPath + "\\lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            // 设置为CPU上运行
            options.AppendExecutionProvider_CPU(0);

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov9_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            // 图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            // input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);

            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new DetectionResult(classer_path, factors);
            result_image = result_pro.draw_result(result_pro.process_result(result_array), image.Clone());
            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            }
            else
            {
                textBox1.Text = "无信息";
            }
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = startupPath + "\\yolov9-c.onnx";
            classer_path = startupPath + "\\lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            // 设置为CPU上运行
            options.AppendExecutionProvider_CPU(0);

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

        }
    }
}

下载 

源码下载​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/479271.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode-74.搜索二维矩阵】

题目详情&#xff1a; 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &#xff0c;如果 target 在矩阵中&#xff0c;返回 true &#xff1b;否则&am…

HTML小游戏27 - Chuck Chicken 魔法蛋网页游戏(附完整源码)

&#x1f482; 网站推荐:【神级源码资源网】【摸鱼小游戏】 【工具大全】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;【轻量化工具创作平台】&#x1f485; 想寻找共同学习交流、摸鱼划水的小伙伴&#xff0c;请点击【学习交流群】 本节教程我会带大家使用 HTML 、…

技术分享|揭秘第三代指标平台如何解决复杂指标的定义与计算问题

本文根据 Aloudata 直播专栏 “NoETL 公开课&#xff5c;第三代指标平台如何解决复杂指标的定义与计算问题&#xff1f;”的演讲内容整理发布。 讲师简介&#xff1a;张乐&#xff0c;Aloudata CAN 指标平台技术负责人。8 年互联网技术架构和数据平台产品相关经验&#xff0c;…

预约陪诊服务app开发的运营模式分析详解

一、引言 随着社会的发展和人们生活水平的提高&#xff0c;人们对健康的需求越来越高&#xff0c;预约陪诊服务应运而生。预约陪诊服务app作为一种便捷的就医工具&#xff0c;为患者提供了更加人性化的就医体验。本文将对预约陪诊服务app开发的运营模式进行分析&#xff0c;以期…

鸿蒙Harmony应用开发—ArkTS(@BuilderParam装饰器:引用@Builder函数)

当开发者创建了自定义组件&#xff0c;并想对该组件添加特定功能时&#xff0c;例如在自定义组件中添加一个点击跳转操作。若直接在组件内嵌入事件方法&#xff0c;将会导致所有引入该自定义组件的地方均增加了该功能。为解决此问题&#xff0c;ArkUI引入了BuilderParam装饰器&…

多ip多进程代理的实现方法

目录 写在前面 一、背景 二、实现方法 1. 使用多线程处理代理请求 2. 使用多进程处理代理请求 3. 实现多IP代理 三、总结 写在前面 实现多IP多进程代理需要使用Python的多线程和多进程模块。本文将介绍如何使用这些模块来实现多IP多进程代理&#xff0c;并提供相关的代…

基于SSM+Jsp+Mysql的高校二手交易平台

基于SSMJspMysql的高校二手交易平台 基于SSMJspMysql的高校二手交易平台的设计与实现 开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff0…

API 接口渗透测试

1 API 接口介绍 1.1 RPC&#xff08;远程过程调用&#xff09; 远程过程调用&#xff08;英语&#xff1a;Remote Procedure Call&#xff0c;缩写为 RPC&#xff09;是一个计算机通信协议。该协议允许运行于一台计算机的程序调用另一台计算机的子程序&#xff0c;而程序员无…

一个案例,看懂AI Agent厂商的商业落地路径

随着大语言模型技术的日益成熟&#xff0c;国内科技巨头纷纷加快在AI Agent领域的布局和应用落地。凭借自身强大的技术积累和丰富的应用场景&#xff0c;推动AI Agent技术在各行各业的深度融合与创新应用。 在AI Agent的落地应用上&#xff0c;目前科技巨头正借助已有AI技术平…

CSDN个人简介优化 html font属性

CSDN个人简介优化 html font属性 个人简介个人简介优化字体21种样式选择字体大小设置4号字体 字体颜色设计渐变色&#xff08;可惜不能显示&#xff09; 字体加粗设置 <b>标签 个人简介 &#x1f308;你好呀&#xff01;我是 是Yu欸 &#x1f30c; 2024每日百字篆刻时光…

spring cloud项目微服务间互相调用使用自定义标注进行鉴权方案

来吧&#xff0c;贴代码。 一、背景 我们有一个项目使用了spring cloud&#xff0c;有的微服务需要调用别的微服务&#xff0c;但这些调用没有鉴权&#xff1b;当初项目时间非常紧&#xff0c;同时这部分微服务有的对外也没有鉴权&#xff0c;在代码中设置了无须鉴权&#xf…

三连杆滑块机构运动学仿真 | 【Matlab源码+理论公式文本】|曲柄滑块 | 曲柄连杆 | 机械连杆

【程序简介】&#x1f4bb;&#x1f50d; 本程序通过matlab实现了三连杆滑块机构的运动学仿真编程&#xff0c;动态展现了三连杆机构的运动动画&#xff0c;同时给出了角位移、角速度和角加速度的时程曲线&#xff0c;除了程序本身&#xff0c;还提供了机构运动学公式推导文档…

【MySQL】MySQL用户管理

文章目录 一、用户1.用户信息2.创建用户3.删除用户4.修改用户密码 二、数据库的权限1.给用户授权2.回收权限 一、用户 如果我们只能使用root用户&#xff0c;这样存在安全隐患。这时&#xff0c;就需要使用MySQL的用户管理。 1.用户信息 我们安装mysql之后&#xff0c;会自动…

ATFX汇市:预期之外,瑞士央行率先降息!瑞郎对美元剧烈贬值

ATFX汇市&#xff1a;昨日&#xff0c;全球的交易者都在盯着美联储和英国央行的利率决议&#xff0c;期待在鲍威尔和贝利的讲话中窥见未来的利率路径。然而&#xff0c;被大部分人所忽略的瑞士央行&#xff0c;在昨日16:30的利率决议上&#xff0c;宣布降息25基点&#xff0c;将…

类对象的初始化过程与方法

类初始化过程与方法 一、类对象的初始化过程 1.初始化的过程 &#xff08;1&#xff09;对象在实例化的时候需要调用构造函数&#xff0c;如果对应的构造函数调用不了&#xff0c;这个对象是没有办法实例化的。 &#xff08;2&#xff09;构造函数的执行&#xff0c;是在内…

2024腾龙杯web签到题-初识jwt(签到:这是一个登录页面)

什么是 jwt? 它是 JSON Web Token 的缩写&#xff0c;是一个开放标准&#xff0c;定义了一种紧凑的、自包含的方式&#xff0c;用于作为JSON对象在各方之间安全地传输信息&#xff0c;该信息可以被验证和信任&#xff0c;因为它是数字签名的。它就是一种认证机制&#xff0c;…

接口自动化之操作mysql数据库!

在接口自动化测试过程中并不像UI自动化测试一样存在界面可以通过界面数据校验正确性&#xff0c;除了可以通过接口返回的数据校验还可以通过操作数据库校验数据&#xff0c;那么我们该如何做接口自动化的数据校验呢&#xff1f;这篇文章我们就讲解以mysql为例&#xff0c;讲解接…

项目系统使用异步业务流程(线程池详细实现)

❤ 作者主页&#xff1a;李奕赫揍小邰的博客 ❀ 个人介绍&#xff1a;大家好&#xff0c;我是李奕赫&#xff01;(&#xffe3;▽&#xffe3;)~* &#x1f34a; 记得点赞、收藏、评论⭐️⭐️⭐️ &#x1f4e3; 认真学习!!!&#x1f389;&#x1f389; 文章目录 异步化1.介绍…

雷卯有高强Ipp的多种电压ESD保护器件推荐

1.上海雷卯推出多种电压 高强Ipp ESD 防护器件 下表仅是部分展示。 3.USB PD 防浪涌方案 4.为什么需要高强Ipp ESD防护器件 硬件工程师常会遇到这种情况&#xff0c;我的PCB 板上电源也放ESD保护器件 了&#xff0c;但是当插拔电或上电瞬间ESD保护器件烧毁了&#xff0c;导致…

schweizer-electronic 公司 safedat2 操作使用说明

schweizer-electronic 公司 safedat2 操作使用说明