基于 Graviton2处理器构建容器化基因分析工作负载

概述

相对于基于传统 x86架构的处理器来说,Amazon 设计的基于 ARM 架构的 Graviton 处理器为 EC2中运行的云工作负载提供了更佳的性价比。基于 Graviton2 的实例支持广泛的通用型、突发型、计算优化型、内存优化型、存储优化型和加速计算型工作负载,包括应用程序服务器、微服务、高性能计算 (HPC)、基于 CPU 的机器学习 (ML) 推理、视频编码、电子设计自动化、游戏、开源数据库和内存中的缓存等。由 Graviton2 处理器支持的 EC2实例 (M6g、C6g、R6g和T4g) 在中国区已经上线一段时间,本文以土壤微生物宏基因测序为例,来演示如何利用Amazon Batch 服务调用基于 Graviton2处理器的实例用于基因分析,并且验证 Graviton2相对于 x86架构的处理器能够给用户带来的收益。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!

 

先决条件

您需要一个 Amazon 帐户来完成本演练,其它条件包括(本篇不再描述其具体使用方式):

  • Amazon CLI v2安装和配置
  • 完成 VPC 的设置,包括公有子网、私有子网和 NAT 的配置等
  • 熟悉 EC2服务的使用,熟悉 EFS、S3等存储服务的使用
  • 熟悉 Batch 服务的使用,包括计算环境、任务队列、任务定义的配置
  • 熟悉生信软件(bwa,samtools,coverm)的安装配置
  • 熟悉容器的使用

整体架构

本文演示了一个基于 Amazon Batch 服务来进行任务调度的方案, Batch 是 Amazon 托管的一个批量计算服务,用户可以通过它运行任意规模的容器化工作负载,目前已经广泛应用于基因分析、药物研发等高性能计算的场景。本方案整体架构及用到的服务如下:

image.png

方案描述:

  • Batch 批量计算任务调度,启动大量计算节点用于计算
  • S3 存储输入和输出数据
  • EFS 映射到容器中,用于存放运行脚本
  • DynamoDB 保存输入数据的信息及处理状态,运行脚本从中读取需要处理的文件列表并更新处理状态
  • ECR 作为容器镜像仓库
  • CloudWatch 监控性能指标及查看日志
  • 开源软件 goofys,挂载 S3存储桶到容器中,简化 S3上数据读取方式,优化 S3到 EC2的数据读取性能
  • 跳板机,用于操作云上资源

软件适配 把原先在 x86架构下的工作负载迁移到 ARM 架构下,首先我们要在 ARM 架构下完成软件的适配。本次演示主要用到 bwa,samtools 和 coverm 三个软件,以下演示如何在 ARM 架构下完成对这些软件的编译并且构建容器镜像。

EC2

启动一台 EC2使用作为开发环境,AMI:Amazon Linux2,实例类型 t4g.medium(必须是 Graviton 机型)。若在中国区编译 coverm 碰到网络问题,可在 Global 区域启动该 EC2,做完容器镜像后直接推送回中国区的 ECR。

安装 Docker

sudo yum update -y
sudo amazon-linux-extras install docker -y
sudo systemctl start docker
sudo systemctl enable docker
sudo usermod -a -G docker ec2-user

登录 EC2安装 docker 后,退出,再重新登录以接受新的 docker 组权限

AWSCLI v2

curl "https://awscli.amazonaws.com/awscli-exe-linux-aarch64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

配置好中国区 AK/SK,为了后续推送容器镜像到国内 ECR

基础镜像

docker pull centos

创建一个目录用于保存后续构建容器镜像需要的文件

mkdir docker
cd docker

bwa

wget https://github.com/lh3/bwa/releases/download/v0.7.17/bwa-0.7.17.tar.bz2
wget https://gitlab.com/arm-hpc/packages/uploads/ca862a40906a0012de90ef7b3a98e49d/sse2neon.h

samtools

wget https://github.com/samtools/samtools/releases/download/1.15.1/samtools-1.15.1.tar.bz2

coverm

起一个容器编译 coverm

docker run --name coverm -v /home/ec2-user/docker:/data -itd centos

进入容器

docker exec -it coverm bash
sed -i 's/mirrorlist/#mirrorlist/g' /etc/yum.repos.d/CentOS-* 
sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-*
yum install git gcc cmake3 -y
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
source $HOME/.cargo/env
git clone https://github.com/wwood/CoverM
cd CoverM
cargo build --release

复制可执行文件到外部存储

cp target/release/coverm /data/coverm

goofys

goofys 用于将 S3存储桶映射到容器中,简化 S3文件读取,将文件直接从 S3读取到 EC2内存,无需落盘,从而加快文件读取速率

编译

yum install go
git clone https://github.com/kahing/goofys.git
cd goofys
GOOS=linux GOARCH=arm64 go build

复制可执行文件到外部存储

cp goofys /data/goofys

退出容器

exit

镜像构建

确保 bwa-0.7.17.tar.bz2, samtools-1.15.1.tar.bz2, coverm, goofys, awscliv2.zip 和 sse2neon.h 已经保存到之前创建的 docker 目录,编辑如下 Dockerfile:

FROM centos
ADD bwa-0.7.17.tar.bz2 samtools-1.15.1.tar.bz2 coverm goofys awscliv2.zip sse2neon.h /opt/

WORKDIR /opt
RUN \ 
sed -i 's/mirrorlist/#mirrorlist/g' /etc/yum.repos.d/CentOS-* && \
sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-* && \
yum install unzip gcc-c++ make autoconf ncurses-devel bzip2 bzip2-devel xz-devel zlib-devel fuse fuse-devel -y && \
yum clean all && \
#awscli
unzip awscliv2.zip && \
./aws/install && \
rm -rf awscliv2.zip aws && \
#bwa
cd bwa-0.7.17 && \
sed -i -e 's/<emmintrin.h>/"sse2neon.h"/' ksw.c && \
mv /opt/sse2neon.h . && \
make && \
cd .. && \
#samtools
cd samtools-1.15.1 && \
autoheader && \
autoconf -Wno-syntax && \
./configure && \
make && \
make install && \
cd .. && \
#coverm
mkdir tools && \
mv coverm tools && \
#goofys
mv goofys tools

WORKDIR /data

ENV PATH=$PATH:/opt/bwa-0.7.17:/opt/tools/

构建镜像

docker build -t mapping-graviton .  

创建 ECR 镜像仓库 mapping-graviton 并查看推送命令推送镜像到该仓库

image.png

云上环境设置

S3

S3存储桶包含3个目录

image.png

source 目录存放输入序列,results 存放结果数据

image.png

ref_data 目录存放参考基因组的索引库

image.png

DynamoDB

创建一张表用于保存 S3上的输入序列信息,投递任务的脚本从表中读取需要处理的基因序列列表,循环投递任务。在任务运行的时候,根据不同的处理阶段,更新表中对应序列的状态值。

参照以下命令向表中插入数据:

aws ddb put reads_graviton '{sample: 'SRR11676645', r1: 'source/SRR11676645_1.fastq.gz', r2: 'source/SRR11676645_2.fastq.gz', status: '0'}'

image.png

EFS

创建一个 EFS 文件系统(fs-0a8685ad57ce63a3f),开发环境挂载 EFS 文件系统,在文件系统中创建 mapping 目录,保存 mapping.sh 到该目录下(放在容器外面主要是为了调试及修改方便,不用每次都重新构建镜像)

image.png

EC2启动模板

修改根卷为 gp3,200G(根据实际需要调整大小),设备名称指定自定义值/dev/xvda

image.png

在测试阶段,若需要监控内存使用率,可在高级详细信息→用户数据,输入以下 CloudWatch Agent 配置

在生产阶段,如果有大量任务运行,建议不要配置 CloudWatch Agent,因为有可能产生指标数量过多的费用

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

--==MYBOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash
yum install amazon-cloudwatch-agent -y
cat << EOF > /opt/aws/amazon-cloudwatch-agent/bin/config.json 
{
    "agent": {
        "metrics_collection_interval": 30,
        "run_as_user": "root"
    },
    "metrics": {
        "append_dimensions": {
            "InstanceId": "\${aws:InstanceId}",
            "InstanceType": "\${aws:InstanceType}"
        },
        "metrics_collected": {
            "mem": {
                "measurement": [
                    "mem_used_percent"
                ],
                "metrics_collection_interval": 30
            },
            "swap": {
                "measurement": [
                    "swap_used_percent"
                ],
                "metrics_collection_interval": 30
            }
        }
    }
}
EOF
/opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a fetch-config -m ec2 -s -c file:/opt/aws/amazon-cloudwatch-agent/bin/config.json

--==MYBOUNDARY==--

IAM 角色

Batch 需要的两个角色,附加合适的权限

image.png

ecsInstanceRoleBatchJobRole

image.png

计算环境

创建配置文件 ce.json:

subnets:配置了 NAT 网关路由的私有子网

securityGroupIds:默认安全组 id

instanceTypes:使用的 r6g 实例类型 tags:EC2标签

123456789012:换成您自己的12位 Amazon 账户 id

{
    "computeEnvironmentName": "env-mapping-graviton",
    "type": "MANAGED",
    "state": "ENABLED",
    "computeResources": {
        "type": "EC2",
        "allocationStrategy": "BEST_FIT",
        "minvCpus": 0,
        "maxvCpus": 2560,
        "desiredvCpus": 0,
        "instanceTypes": [
            "r6g"
        ],
        "subnets": [
            "subnet-03388bca5b37db2b9",
            "subnet-0fafc120e429ec25d"
        ],
        "securityGroupIds": [
            "sg-0468dd9696811b7b8"
        ],
        "instanceRole": "arn:aws-cn:iam::123456789012:instance-profile/ecsInstanceRole",
        "tags": {
            "Name": "batch-mapping-graviton"
        },
        "launchTemplate": {
            "launchTemplateName": "lt-batch-zju",
            "version": "9"
        }
    },
    "serviceRole": "arn:aws-cn:iam::123456789012:role/aws-service-role/batch.amazonaws.com/AWSServiceRoleForBatch"
}

创建计算环境

aws batch create-compute-environment --cli-input-json file://ce.json

任务队列

创建配置文件 jq.json:

computeEnvironment:上一步创建的计算环境的 arn

{
    "jobQueueName": "q-mapping-graviton",
    "state": "ENABLED",
    "priority": 1,
    "computeEnvironmentOrder": [
        {
            "order": 1,
            "computeEnvironment": "arn:aws-cn:batch:cn-northwest-1:123456789012:compute-environment/env-mapping-graviton"
        }
    ]
}

创建任务队列

aws batch create-job-queue --cli-input-json file://jq.json

任务定义

创建配置文件 jd.json:

privileged: 容器中运行 goofys 需要开启特权模式,设为 true

{
    "jobDefinitionName": "jd-mapping-graviton",
    "type": "container",
    "parameters": {
        "r2": "source/SRR11676645_2.fastq.gz",
        "dbtable": "reads_graviton",
        "sample": "SRR11676645",
        "script": "mapping.sh",
        "r1": "source/SRR11676645_1.fastq.gz"
    },
    "containerProperties": {
        "image": "123456789012.dkr.ecr.cn-northwest-1.amazonaws.com.cn/mapping-graviton:latest",
        "command": [
            "sh",
            "Ref::script",
            "Ref::sample",
            "Ref::r1",
            "Ref::r2",
            "Ref::dbtable"
        ],
        "jobRoleArn": "arn:aws-cn:iam::123456789012:role/BatchJobRole",
        "volumes": [
            {
                "name": "efs",
                "efsVolumeConfiguration": {
                    "fileSystemId": "fs-0a8685ad57ce63a3f",
                    "rootDirectory": "mapping"
                }
            }
        ],
        "environment": [
            {
                "name": "S3_MOUNT_POINT",
                "value": "/s3"
            }
        ],
        "mountPoints": [
            {
                "containerPath": "/data",
                "sourceVolume": "efs"
            }
        ],
        "privileged": true,
        "resourceRequirements": [
            {
                "value": "64",
                "type": "VCPU"
            },
            {
                "value": "500000",
                "type": "MEMORY"
            }
        ]
    },
    "platformCapabilities": [
        "EC2"
    ]
}

注册任务定义

aws batch register-job-definition --cli-input-json file://jd.json

任务脚本 mapping.sh

实际任务运行所调用的脚本(保存到 EFS 的 mapping 目录下)

sample=$1
r1=$2
r2=$3
dbtable=$4
echo 'sample: '$sample', r1: '$r1', r2: '$r2', dbtable: '$dbtable

echo 'mount s3 bucket'
mkdir -p $S3_MOUNT_POINT
goofys --region cn-northwest-1 sun-test $S3_MOUNT_POINT
base_dir=$S3_MOUNT_POINT
ls -lh $base_dir

echo 'job done set status to 1'
aws dynamodb execute-statement --statement "UPDATE $dbtable SET status=1 WHERE sample='$sample'"

echo 'bwa start'
mkdir /result
bwa mem -t 64 $base_dir/ref_data/derep_all.fa $base_dir/$r1 $base_dir/$r2 > /result/$sample.sam
echo 'samtools start'
samtools sort /result/$sample.sam -@ 64 -o /result/$sample.bam
echo 'rm sample'
rm /result/$sample.sam

echo 'job done set status to 2'
aws dynamodb execute-statement --statement "UPDATE $dbtable SET status=2 WHERE sample='$sample'"

echo 'coverm filter start'
coverm filter --min-read-percent-identity 0.95 --min-read-aligned-percent 0.75 -b /result/$sample.bam -o /result/${sample}_filter.bam -t 64
echo 'copy '${sample}_filter.bam' to s3'
mkdir -p $base_dir/results/$dbtable
cp /result/${sample}_filter.bam $base_dir/results/$dbtable/

echo 'job done set status to 3'
aws dynamodb execute-statement --statement "UPDATE $dbtable SET status=3 WHERE sample='$sample'"

echo 'rm result '$sample.bam' from local disk'
rm /result/$sample.bam

echo 'coverm contig start'
coverm contig --trim-max 90 --trim-min 10 --min-read-aligned-percent 70 -t 64 --bam-files /result/${sample}_filter.bam > /result/${sample}_coverage.csv
echo 'copy to s3'
cp /result/${sample}_coverage.csv $base_dir/results/$dbtable

echo 'job done set status to 4'
aws dynamodb execute-statement --statement "UPDATE $dbtable SET status=4 WHERE sample='$sample'"

echo 'rm result '${sample}_filter.bam' from local disk'
rm /result/${sample}_filter.bam

run_mapping.sh

通过 run_mapping.sh 来读取数据库中序列信息并循环提交多个 Batch 任务,该脚本可在跳板机或本地执行

dbtable='reads_graviton'
item=`aws ddb select $dbtable --filter 'status = 0' `
count=`echo $item | awk '{print $2}'`
echo 'count: '$count
if [ $count -eq 0 ]
then
        echo 'end'
        break
fi
info=`echo $item | awk '{for(i=10;i<=NF;i=i+9){print $i}}'`
fastq_1=`echo $item | awk '{for(i=6;i<=NF;i=i+9){print $i}}'`
fastq_2=`echo $item | awk '{for(i=8;i<=NF;i=i+9){print $i}}'`

for ((i=1;i<=$count;i++))
do
        sample=`echo $info|awk '{print $'$i'}'`
        echo 'sample= '$sample
        r1=`echo $fastq_1|awk '{print $'$i'}'`
        echo 'r1= '$r1
        r2=`echo $fastq_2|awk '{print $'$i'}'`
        echo 'r2= '$r2      
        jobname=${dbtable}_${sample%.*}
        echo 'jobnane= '$jobname
        aws batch submit-job --job-name $jobname --job-queue q-mapping-graviton --job-definition jd-mapping-graviton:1 --parameters script=mapping.sh,sample=$sample,r1=$r1,r2=$r2,dbtable=$dbtable
done

测试

按照类似的方法再创建一套基于 x86架构的 Batch 计算环境、任务队列、任务定义(不再赘述创建方法),相同的任务分别投递到 arm 和 x86环境,进行对比测试。

单个序列比对任务需要用到的内存为300G+,故使用类型为r6g.16xlarge 和 r5.16xlarge 的 EC2实例进行对比测试, 测试结果如下:

CPU/MEM 监控-CloudWatch

SRR11676645

image.png

SRR11676933

image.png

FDMS190655335

image.png

在计算阶段,r6g.16xlarge 和 r5.16xlarge 的资源利用率几乎一致,CPU 利用率都能到100%,内存利用率都为60%左右

用时

image.png

r6g.16xlarge 相对 r5.16xlarge 所需时间大约减少16%左右

EC2价格对比

image.png

r6g.16xlarge相对r5.16xlargeEC2价格大约下降20%左右

结论

基于 Batch 的任务调度,在计算任务完成之后,Batch 会自动终止不再运行任务的 EC2实例,所以时间的节约也能带来 EC2和 EBS 的成本节约。根据以上测试结果,在基因测序序列比对这个场景下,使用 ARM 架构的 Graviton 实例,相对于5代 x86实例,能有:

  • 16%左右时间节约
  • 16%左右 EBS 成本节约
  • 1 – (1-16%) x (1-20%) = 32.8%左右 EC2成本节约

在这篇文章中,我们演示了如何基于 Graviton2处理器所支持的 EC2实例,在 Amazon 上使用 Batch 服务来运行基因测序的工作负载。并且根据测试的结果,使用 Graviton2处理器用于基因测序的序列比对场景,能够很好的满足用户对于性能和成本的需求。只要您的工作负载所用的操作系统和软件能够适配 ARM 架构,在 Amazon 上就可以利用 Graviton 处理器高性价比的特点来达到降本增效的目的。

参考文档

Amazon Batch 用户指南:

什么是 AWS Batch? - AWS Batch

利用 Amazon Batch 来为容器化负载调用海量云端算力:

利用 AWS Batch 来为容器化负载调用海量云端算力 | 亚马逊AWS官方博客

在云中对基因组学工作负载进行基准测试的通用方法:在 Graviton2 上运行 BWA 读取对齐器:

A generalized approach to benchmarking genomics workloads in the cloud: Running the BWA read aligner on Graviton2 | AWS Public Sector Blog

本篇作者

image.png

孙亮

Amazon 解决方案架构师,硕士毕业于浙江大学计算机系。在加入 Amazon 之前,拥有多年软件行业开发经验。目前在 Public Sector 部门主要服务于生命科学和医疗健康相关的行业客户,致力于提供有关 HPC、容器、无服务器、数据安全等各类云计算解决方案的咨询与架构设计。

image.png

刘光

Amazon 资深解决方案架构师,目前负责基于 Amazon 云计算方案架构的咨询和设计,同时致力于 Amazon 云服务在政企、教育和医疗行业客户的推广。在加入 Amazon 之前就职于 Citrix,具有多年企业虚拟化、VDI 架构设计和支持经验。

文章来源:https://dev.amazoncloud.cn/column/article/6309981076658473a321ffc1?sc_medium=regulartraffic&amp;sc_campaign=crossplatform&amp;sc_channel=CSDN 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/47520.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数字IC实践项目(7)—CNN加速器的设计和实现(付费项目)

数字IC实践项目&#xff08;7&#xff09;—基于Verilog的CNN加速器&#xff08;付费项目&#xff09; 写在前面的话项目整体框图神经网络框图完整电路框图 项目简介和学习目的软件环境要求 资源占用&板载功耗总结 写在前面的话 项目介绍&#xff1a; 卷积神经网络硬件加速…

【C++ 重要知识点总结】自定义类型-类和结构体

类 类的基本特性 数据抽象和封装继承多态 1 类的构成——抽象 概念 数据抽象是一种依赖于接口和实现的分离的编程技术。类的接口包括用户所能执行的操作&#xff1b;类的实现包括类的数据成员、负责接口实现的函数体以及定义类所需要的的各种私有函数。封装实现了类的接口和实…

数据服务:保障数据安全、提升数据价值的利器

04-08把元数据以及在它基础上的五大应用场景&#xff1a;数据发现&#xff08;数据地图&#xff09;、指标管理、模型设计、数据质量、成本优化&#xff0c;全部讲完。这部分内容对应的就是数据中台OneData 方法论。学完这部分内容&#xff0c;你已了解OneData方法论在企业内部…

【业务功能篇55】Springboot+easyPOI 导入导出

Apache POI是Apache软件基金会的开源项目&#xff0c;POI提供API给Java程序对Microsoft Office格式档案读和写的功能。 Apache POI 代码实现复杂&#xff0c;学习成本较高。 Easypoi 功能如同名字easy,主打的功能就是容易,让一个没见接触过poi的人员 就可以方便的写出Excel导出…

MySQL基础扎实——MySQL中各种数据类型之间的区别

在MySQL中&#xff0c;有各种不同的数据类型可供选择来存储不同类型的数据。下面是一些常见的数据类型以及它们之间的区别&#xff1a; 整数类型&#xff1a; TINYINT&#xff1a;1字节&#xff0c;范围为-128到127或0到255&#xff08;无符号&#xff09;。SMALLINT&#xff1…

项目文档管理的基本指南

项目文档是一种关键的项目管理资源&#xff0c;它可以提供清晰度&#xff0c;保证参与项目的每个人都在同一页面上&#xff0c;从而确保项目按时、按预算完成。 本文将讨论项目文档的重要性、如何在项目中使用项目文档以及选择好合适的项目文档管理软件的技巧。 什么是项目文…

代码随想录算法学习心得 49 | 647.回文子串、516.最长回文子序列...

一、最长回文子序列 链接&#xff1a;力扣 描述&#xff1a;给你一个字符串 s &#xff0c;找出其中最长的回文子序列&#xff0c;并返回该序列的长度。 子序列定义为&#xff1a;不改变剩余字符顺序的情况下&#xff0c;删除某些字符或者不删除任何字符形成的一个序列。 思…

【C++】开源:Boost网络库Asio配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Asio网络库配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下次…

Form Generator 扩展子表单组件之表单校验(超详细)

一、form-generator是什么?✨ ⭐️ 🌟 form-generator的作者是这样介绍的:Element UI表单设计及代码生成器,可将生成的代码直接运行在基于Element的vue项目中;也可导出JSON表单,使用配套的解析器将JSON解析成真实的表单。 但目前它提供的组件并不能满足我们在项目中的…

【搜索引擎Solr】Apache Solr 神经搜索

Sease[1] 与 Alessandro Benedetti&#xff08;Apache Lucene/Solr PMC 成员和提交者&#xff09;和 Elia Porciani&#xff08;Sease 研发软件工程师&#xff09;共同为开源社区贡献了 Apache Solr 中神经搜索的第一个里程碑。 它依赖于 Apache Lucene 实现 [2] 进行 K-最近邻…

【Apollo学习笔记】—— Routing模块

Routing模块功能 Apollo的routing模块读取高精地图原始信息&#xff0c;用于根据输入RoutingRequest信息在base_map中选取匹配最近的点作为导航轨迹的起点和终点&#xff0c;读取依据base_map生成的routing_map作为生成topo_graph的&#xff0c;然后通过Astar算法在拓扑图中搜…

SSIS对SQL Server向Mysql数据转发表数据 (一)

开发工具 Visual Stuido 2019 、SSIS、SQL Server 2016、Mysql 8.0.30 1、配置VS2019的添加相应的功能&#xff0c;勾选SQL Server Data Tools,下载就行我用的VS2019版本还需要下载下面几个插件&#xff0c;链接我放在下面了 Microsoft Analysis Services Projects - Visual St…

[linux--->应用层网络通信协议]

文章目录 [TOC](文章目录) 一、应用层通信概念1.协议2.信息接收 二、网络计算器实战应用三、http协议1.基本认识2.宏观理解http3.网站内部跳转4.请求方法5.状态码5.1重定向5.2错误码 6.常见报头7.http会话保持功能8.模拟http协议服务器编程 四、https协议1.加密概念2.加密的作用…

esp32_arduino的开发库安装笔记

1.1 Arduino软件下载与安装 Arduino官网下载地址&#xff1a;https://www.arduino.cc/en/software。 1.2在线安装 选择文件 - 首选项。 在附加开发板管理器网址中添加以下链接中的一个。 (1)Stable release link: https://raw.githubusercontent.com/espressif/arduino-es…

opencv-17 脸部打码及解码

使用掩模和按位运算方式实现的对脸部打码、解码实例 代码如下&#xff1a; import cv2 import numpy as np #读取原始载体图像 lenacv2.imread("lena.png",0) #读取原始载体图像的 shape 值 r,clena.shape masknp.zeros((r,c),dtypenp.uint8) mask[220:400,250:350…

MLagents 多场景并行训练

MLagents多场景并行训练调试总结 摘要 关于Unity MLagents的环境安装已经有了很多的blog和Video&#xff0c;本文针对MLagents的多场景的并行训练&#xff0c;以及在探索过程中出现的问题进行总结。 内容 Unity MLagents 多场景并行训练可以同时设置开多个场景进行并行探索…

账号列表的删除编辑提交

<template><div><plan title"账号列表"><!-- selection-change"handleSelectionChange"添加这个属性就是点击可以得到你想要的value值 --><el-tablestyle"width: 100%":data"list"selection-change"h…

Python 生成随机图片验证码

使用Python生成图片验证码 Python 生成随机图片验证码安装pillow包pillow包生成图片基本用法生成图片验证码 Python 生成随机图片验证码 在写一个Web项目的时候一般要写登录操作&#xff0c;而为了安全起见&#xff0c;现在的登录功能都会加上输入图片验证码这一功能&#xff…

上海VR全景展示,快速了解VR全景拍摄

导语&#xff1a; 随着科技的不断进步&#xff0c;虚拟现实技术的应用日益广泛。在这其中&#xff0c;VR全景图片作为一种数字化助力的全景拍摄方式&#xff0c;正逐渐成为人们关注的焦点。通过数字化技术&#xff0c;VR全景图片能够以360度全方位的视角呈现真实的场景&#x…

功率放大器在电光调制中的应用有哪些

电光调制是一种利用光电效应将电信号转化为光信号的技术。在实现电光调制的过程中&#xff0c;功率放大器作为一个重要的组件&#xff0c;具有对输入电信号进行放大和控制的功能。本文将介绍功率放大器的基本原理、特点以及在电光调制中的应用。 基本原理 功率放大器是一种能够…