MINT: Detecting Fraudulent Behaviors from Time-series Relational Data论文阅读笔记

2. 问题定义
时间序列关系数据(Time Series Relation Data)

这个数据是存放在关系型数据库中,每一条记录都是泰永时间搓的行为。

更具体地,每条记录表示为 x = ( v , t , x 1 , x 2 , … , x m − 2 ) x = (v,t,x_1,x_2,\dots,x_{m-2}) x=(v,t,x1,x2,,xm2),其中 v v v代表带时间戳的行为, t t t是时间戳,𝑥𝑖代表其他属性,例如设备ID和会话持续时间。

针对时间序列关系数据的欺诈检测(Fraud Detection over Time Series Relation Data)

每一个用户 u ∈ U u \in U uU都会有一些列的行为 V = { v 0 , v 1 , … , v n − 1 } V = \{v_0, v_1, \dots, v_{n-1}\} V={v0,v1,,vn1}其中 v i ∈ V v_{i} \in V viV代表的是用户的行为, n n n是序列的长度。用户的行为数据,也就是 V V V通常是按照时间顺序进行呈现的,目的是根据用户的历史顺序行为数据确定用户是否有可以行为,这个任务可以被构建为一个二分类任务

时间感知行为图

给定一个具有带时间戳的行为序列 V = { v 0 , v 1 , … , v n − 1 } V = \{v_0, v_1, \dots, v_{n-1}\} V={v0,v1,,vn1}及相应的属性的用户,其时间感知行为图定义为 G = { V , E , A } G = \{V, E, A\} G={V,E,A}, 其中 V V V代表行动节点, E E E是边, A ∈ R n ∗ n ( 0 ≤ A i , j ≤ 1 ) A \in R^{n*n}(0 \leq A_{i,j} \leq 1) ARnn(0Ai,j1)是图卷积矩阵(graph convolutional matrix)。图中的每个节点 V i V_i Vi代表一条记录,每条边< v i , v j v_i, v_j vi,vj>的权重与 v i v_i vi代表一条记录,每条边< v i v_i vi, v j v_j vj>的权重与 v i v_i vi v j v_j vj之间的时间差成反比。

图卷积矩阵(Graph Convolutional Matrix)

GCN计算所有邻近节点(包含节点本身)的节点特征的胶圈平均值。权重矩阵被称为图卷积矩阵。在时间感知行为图中,构建了一个时间感知的图卷积矩阵来模拟行动之间的相互依赖性。更具体地说,第 i i i个节点和第 j j j个节点之间的归一化边权重是
A ~ i , j = ρ ∣ t i − t j ∣ ∑ k = 0 n − 1 ρ ∣ t i − t k ∣ \widetilde{A}_{i,j}=\frac{\rho^{|t_i-t_j|}}{\sum_{k=0}^{n-1}\rho^{|t_i-t_k|}} A i,j=k=0n1ρtitkρtitj
,其中 0 < ρ < 1 0 < \rho <1 0<ρ<1 是控制每个目标节点接受场的范围的超参数。

3. MINT框架

image-20240320200744009

3.1 提取用户的时间信息,构建具有三个不同视角的时间感知行为图。

image-20240320200905759

MINT的数据预处理模块由图卷积矩阵构造器节点嵌入构造器组成。

  1. 将每一个行为表示为一个带有相应属性的节点特征
  2. 根据算法1构建三个具有不同接收计算的图卷积助阵,这个主要是 ρ \rho ρ的数值不相同。
  3. 更深的图卷积层会聚合更多的邻域信息(图四中的蓝色节点)到目的节点。
  4. 每一层中表示的是某一个用户的所有行为,按照的是时间段进行排序,然后,每一个节点的中的属性,例如时间,设备等等,会放入MLP中,输入的维度为 d d d,表示的是一个节点(也就是一个行为)的特征。
  5. 初始的行为嵌入表示为 H ( 0 ) ∈ R n ∗ d H^{(0)} \in R^{n*d} H(0)Rnd,其中 n n n是节点的数量, d d d表示输入嵌入的维度。
3.2 多视图卷积网络
3.2.1 多视图图卷积

在每一层图卷积中,特征聚合如下执行:
h N ( v i ) ( l ) = ∑ v j ∈ N ( v i ) A v i , v j ( l ) ∗ h v j ( l − 1 ) \mathbf{h}_{\mathcal{N}(v_i)}^{(l)}=\sum_{v_j\in\mathcal{N}(v_i)}\mathbf{A}_{v_i,v_j}^{(l)}*\mathbf{h}_{v_j}^{(l-1)} hN(vi)(l)=vjN(vi)Avi,vj(l)hvj(l1)
我们现在知道, H ( 0 ) = [ h v 0 ( 0 ) , h v 1 ( 0 ) , … , h v n − 1 ( 0 ) ] H^{(0)} = [h_{v_0}^{(0)},h_{v_1}^{(0)},\dots,h_{v_{n-1}}^{(0)}] H(0)=[hv0(0),hv1(0),,hvn1(0)],这个是初始化的特征,通过节点的属性经过 M L P MLP MLP获取的,

h N ( v i ) ( l ) \mathbf{h}_{\mathcal{N}(v_i)}^{(l)} hN(vi)(l)表示的是第 l l l层中行动节点 v i v_i vi的聚合邻居表示, A v i , v j ( l ) \mathbf{A}_{v_i,v_j}^{(l)} Avi,vj(l)表示的是在第 l l l层中行动节点 v j v_j vj到节点 v i v_i vi的归一化聚合系数。粗俗一点说也就是第 l l l层的节点特征是通过第 l − 1 l-1 l1层的节点特征*第 l l l层中的图卷积矩阵

然后,对于他自己聚合邻居节点候得特征计算方式如下:
h v i ( l ) = L e a k y R e L U ( W ( l ) h N ( v i ) ( l ) ) \mathbf{h}_{v_i}^{(l)}=LeakyReLU(\mathbf{W}^{(l)}\mathbf{h}_{\mathcal{N}(v_i)}^{(l)}) hvi(l)=LeakyReLU(W(l)hN(vi)(l))
L e a k y R e L U LeakyReLU LeakyReLU的激活函数公式如下所示,一般的 R e L U ReLU ReLU函数会将小于0的数值变成0,但是 L e a k y R e L U LeakyReLU LeakyReLU会将小于0的数值变成极小值
f ( x ) = { x   i f   x > 0 α x   i f   x ≤ 0 f(x)=\begin{cases}x&\mathrm{~if~}x>0\\\alpha x&\mathrm{~if~}x\leq0&\end{cases} f(x)={xαx if x>0 if x0
可以看见其中的 W ( l ) ∈ R d ∗ d \mathbf{W}^{(l)} \in R^{d*d} W(l)Rdd是第 l l l层转换函数中的可训练参数矩阵。

3.2.2 门控邻居交互

image-20240321111329141

在这一节中,作者推翻了上一小节讲述的东西,现在说的是上一小节的做法会存在过平滑问题

仅仅依赖时间间隔信息的信息聚合方法会导致严重的过平滑问题。也就是说,一些常见的行为,如‘访问主页’,在用户的行为数据中出现的频率远高于其他行为。导致用户的表示会被常见的行为信息所主导,从而降低欺诈检测的性能。我们将这个问题称为是过平滑问题。为了解决这个问题,我们尝试从邻居节点中尝试去聚合更有用的信息,作者设计了一个门控邻居交互机制。

首先对于第 l l l层中行动节点 v i v_i vi的聚合邻居表示 h N ( v i ) ( l ) \mathbf{h}_{\mathcal{N}(v_i)}^{(l)} hN(vi)(l),变成了如下公式进行解决:
h ^ N ( v i ) ( l ) = LayerNorm ( σ ( h v i ( 0 ) ) ⊙ t a n h ( h N ( v i ) ( l ) ) ) \widehat{\mathrm{h}}_{\mathcal{N}(v_i)}^{(l)}=\text{LayerNorm}(\sigma(\mathrm{h}_{v_i}^{(0)})\odot tanh(\mathrm{h}_{\mathcal{N}(v_i)}^{(l)})) h N(vi)(l)=LayerNorm(σ(hvi(0))tanh(hN(vi)(l)))
其中,他把初始化的通过节点属性输入进 M L P MLP MLP中的特征的输出结果,输出进了 σ \sigma σ函数中,其中 σ \sigma σ函数的公式如下:
σ ( x ) = 1 1 + e − x \sigma(x)=\frac1{1+e^{-x}} σ(x)=1+ex1
他是把输入的 x x x输出为一个[0-1]的数值,这样做的目的可能是引入非线性函数去捕获更加复杂的信息。

然后 t a n h ( x ) tanh(x) tanh(x)的结构如下所示:
tanh ⁡ ( x ) = e x − e − x e x + e − x \tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} tanh(x)=ex+exexex
他的输出范围在[-1,1],通过这样的方式去保持中心化,也可以改善梯度流

采用 L a y e r N o r m LayerNorm LayerNorm也是为了缓解梯度爆炸或者梯度消失的问题。

最后,在第 l l l层中的节点特征 h v i ( l ) \mathbf{h}_{v_i}^{(l)} hvi(l)被表示为:
h v i ( l ) = L e a k y R e L U ( W ( l ) h ^ N ( v i ) ( l ) ) \mathbf{h}_{v_i}^{(l)}=LeakyReLU(\mathbf{W}^{(l)}\widehat{\mathbf{h}}_{\mathcal{N}(v_i)}^{(l)}) hvi(l)=LeakyReLU(W(l)h N(vi)(l))

读出层

image-20240321124821803

我们为了从行为嵌入矩阵中【 H ( l ) = [ h v 0 ( l ) , h v 1 ( l ) , … , h v n − 1 ( l ) ] H^{(l)} = [h_{v_0}^{(l)},h_{v_1}^{(l)},\dots,h_{v_{n-1}}^{(l)}] H(l)=[hv0(l),hv1(l),,hvn1(l)],】生成意图嵌入向量,设计了一个最大池化层和基于注意力机制的读出层,如图5所示。我们通过最大池化层去获取最显著的特征,我们称为嵌入相关的意图表示: h e ( 0 ) , h e ( 1 ) , h e ( 2 ) , h e ( 3 ) h_e^{(0)}, h_e^{(1)}, h_e^{(2)},h_e^{(3)} he(0),he(1),he(2),he(3),然后再运用注意力机制去融合在嵌入维度上保持最显著的行为。

对于每个试图,与行为相关的意图表示如下获得:
α ( l ) = ϕ a t t ( h e ( l ) , H ( l ) ) = h e ( l ) ⊺ W a t t H ( l ) \alpha^{(l)}=\phi_{att}(\mathbf{h}_{e}^{(l)},\mathbf{H}^{(l)})=\mathbf{h}_{e}^{(l)^{\intercal}}\mathbf{W}^{att}\mathbf{H}^{(l)} α(l)=ϕatt(he(l),H(l))=he(l)WattH(l)
h e ( l ) ⊺ ∈ R d ∗ n \mathbf{h}_{e}^{(l)^{\intercal}} \in R^{d*n} he(l)Rdn| W a t t ∈ R d ∗ d \mathbf{W}^{att} \in R^{d*d} WattRdd| H ( l ) ∈ R n ∗ d H^{(l)} \in R^{n*d} H(l)Rnd => α ( l ) ∈ R n ∗ n \alpha^{(l)} \in R^{n*n} α(l)Rnn

注意力机制计算后的结果:
h a ( l ) = ∑ i = 0 n − 1 α i ( l ) ⋅ h i ( l ) , α i ( l ) ∈ α ( l ) , h i ( l ) ∈ H ( l ) \mathbf{h}_{a}^{(l)}=\sum_{i=0}^{n-1}\alpha_{i}^{(l)}\cdot\mathbf{h}_{i}^{(l)},\alpha_{i}^{(l)}\in\boldsymbol{\alpha}^{(l)},\mathbf{h}_{i}^{(l)}\in\mathbf{H}^{(l)} ha(l)=i=0n1αi(l)hi(l),αi(l)α(l),hi(l)H(l)
α ( l ) ∈ R n ∗ n \alpha^{(l)} \in R^{n*n} α(l)Rnn| h ( l ) ∈ R n ∗ d \mathbf{h}^{(l)} \in R^{n*d} h(l)Rnd => h a ( l ) ∈ R n ∗ d \mathbf{h}_{a}^{(l)} \in R^{n*d} ha(l)Rnd

最后,该层的每个节点特征为: h ( l ) = h e ( l ) + h a ( l ) . \mathbf{h}^{(l)}=\mathbf{h}_{e}^{(l)}+\mathbf{h}_{a}^{(l)}. h(l)=he(l)+ha(l). 最后 h ( l ) ∈ R n ∗ d \mathbf{h}^{(l)} \in R^{n*d} h(l)Rnd

3.2.3 预测模块 (Prediction Module)

z = C O N C A T E ( [ h ( 0 ) , h ( 1 ) , h ( 2 ) , h ( 3 ) ] ) p = ϕ M L P ( z ) , ϕ M L P : R 4 ∗ d ↦ R \begin{aligned}\mathbf{z}&=CONCATE([\mathbf{h}^{(0)},\mathbf{h}^{(1)},\mathbf{h}^{(2)},\mathbf{h}^{(3)}])\\\\p&=\phi_{MLP}(z),\phi_{MLP}:\mathbb{R}^{4*d}\mapsto\mathbb{R}\end{aligned} zp=CONCATE([h(0),h(1),h(2),h(3)])=ϕMLP(z),ϕMLP:R4dR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/474827.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【JS】浅谈Promise

Promise 前言一、Promise是什么&#xff1f;二、为什么用Promise&#xff1f;2.1解决回调地狱2.2 集中错误处理2.3代码解耦和复用 三、做什么&#xff1f;四、原型方法和实例方法&#xff1f;五、应用场景&#xff1f; 前言 promise是es6的新规范&#xff0c;它是一种异步解决…

粗糙度对应表,觉得挺实用

粗糙度新老标准经常会遇到&#xff0c;分享给大家

大数据分析师特训营介绍

大数据分析师是做什么的&#xff1f; 数据分析师是在不同行业中&#xff0c;专门从事行业数据搜集、整理、分析&#xff0c;并依据数据做出行业研究、评估和预测等工作的。与传统的数据分析师相比&#xff0c;大数据分析师要学会打破信息孤岛利用各种数据源&#xff0c;在海量…

ByteTrack多目标跟踪——YOLOX详解

文章目录 1 before train1.1 dataset1.2 model 2 train2.1 Backbone2.2 PAFPN2.3 Head2.3.1 Decoupled Head2.3.2 anchor-free2.3.3 标签分配① 初步筛选② simOTA 2.3.4 Loss计算 项目地址&#xff1a; ByteTrack ByteTrack使用的检测器是YOLOX&#xff0c;是一个目前非常流行…

Ceres求解非线性优化问题步骤与示例

【版权声明】 本文为博主原创文章&#xff0c;未经博主允许严禁转载&#xff0c;我们会定期进行侵权检索。 在计算机视觉和机器人领域&#xff0c;经常需要解决非线性优化问题来估计相机姿态或运动模型。Ceres Solver是一个开源的C库&#xff0c;专门用于解决最小二乘问题&am…

Linux系统如何使用tcpdump实时监控网络速度:方法与技巧解析

在网络管理和故障排查中&#xff0c;了解网络速度是一个重要的环节。而tcpdump&#xff0c;作为一个强大的网络数据包分析工具&#xff0c;不仅可以用于分析数据包的内容&#xff0c;还能用于实时监控网络速度。本文将介绍Linux系统如何使用tcpdump来实时监控网络速度。 首先&…

智能型程控直流电子负载特点和特性

智能型程控直流电子负载是高精度、高稳定性的电源测试设备&#xff0c;主要用于对电源、电池、充电器等直流电源设备的输出性能进行测试。它具有以下特点和特性&#xff1a; 智能型程控直流电子负载采用先进的控制算法和高精度的ADC&#xff0c;能够实现对电流、电压、功率等参…

【EOJ】2985.圆和正方形

单点时限: 2.0 sec 内存限制: 256 MB 小王首先在平面上画一个边长为 K 的正方形 S1&#xff0c;然后又画一个 S1 的内切圆 C1&#xff0c;这算做一次操作。然后接着画 C1 的一个内切正方形 S2&#xff0c;和 S2 的一个内切圆 C2&#xff0c;这算第二次操作。他一直进行了 K 次…

前端学习笔记 | JS进阶

一、作用域 1、局部作用域 &#xff08;1&#xff09;函数作用域 &#xff08;2&#xff09;块作用域 let和const会产生块作用域 &#xff0c;而var不会产生块作用域 2、全局作用域 script标签和js文件的【最外层】变量 3、作用域链 本质&#xff1a;底层的变量查找机制 4、JS…

AI时代,我靠2个页面,一个AI产品开始变现

大家好&#xff0c;我是AI时间线的作者&#xff0c;AI时间线这个产品是我利用过年期间半天时间开发出来的一个产品。 产品地址:http://www.ai-timeline.top/ 核心功能主要是根据关键词生成时间线&#xff0c;大家可以看看产品上使用教程&#xff0c;非常简单 当然幸运的是目前产…

解决:springboot项目访问hdfs文件提示guava版本不兼容

1、问题描述 版本说明&#xff1a;我用的hadoop版本&#xff1a;3.1.3 项目可以正常启动&#xff0c;但是调用访问hdfs的服务时候报错,报错消息如下&#xff1a;com.google.common.base.preconditions.checkArgument(ZL java/lang/String;Ljava/lang/Object:)V 原因分析&#x…

安科瑞保护测控产品在新能源行业中应用【峰谷套利 动态扩容 需求侧响应】

背景 2 月 10 日发布《关于完善能源绿色低碳转型体制机制和措施的意见》明确&#xff0c;鼓励建设源网荷储一体化、多能互补的智慧能源系统和微电网。 分布式光伏优势 近年来&#xff0c;随着光伏产业规模不断扩大&#xff0c;技术迭代升级不断加快&#xff0c;智能制造迅速推…

如何让工作计划显示在桌面上面?电脑桌面日程安排软件

作为一名忙碌的上班族&#xff0c;我每天都要面对繁多的工作任务&#xff0c;如何确保每一项任务都能按时完成&#xff0c;避免遗漏或忘记&#xff0c;成为了我必须面对的挑战。提前列出工作计划固然有效&#xff0c;但如果能将这些计划直接显示在电脑桌面上&#xff0c;无疑将…

uniapp_微信小程序客服

一、调用api 二、代码 <button open-type"contact">客服</button> 三、小程序后台添加客服人员就行

应急响应靶机训练-Web3题解

前言 接上文&#xff0c;应急响应靶机训练-Web3。 前来挑战&#xff01;应急响应靶机训练-Web3 题解 首先登录用户administrator 寻找隐藏用户 找到隐藏用户hack6618$ 然后去找apache的日志文件 分析得出两个IP地址 192.168.75.129 192.168.75.130 然后更换hack6618$的…

几个好用的AI网站(视频/图片/论文/PPT生成)直接给链接

引入 随着人工智能技术的飞速发展&#xff0c;越来越多的AI创作工具开始涌现&#xff0c;它们不仅能够帮助我们提升写作效率&#xff0c;更能激发创作灵感。今天&#xff0c;就让我们一起来探索十个值得一试的AI网站&#xff0c;它们分别是sora、mused.org、英伟达本地AI、瑞达…

将MySQL数据库在idea中引入

输入SQL语句后运行即可

单片机第四季-第二课:uCos2源码-BSP

1&#xff0c;初始uCos2 文件中uC开头的为uCos相关的。 2&#xff0c;uCos2源码工程建立 建立Source Insight工程 寻找main函数 (1)RTOS其实就是一个大的裸机程序&#xff0c;也是从main开始运行的 (2)main之前也是有一个汇编的启动文件的 (3)main中调用了很多初始化函数 bsp部…

智慧交通运维合集:基于图扑数字孪生技术的解决方案

城市交通作为城市与区域交通体系的核心&#xff0c;其完善程度和发展水平是评价城市现代化水准的关键指标之一。 城市交通数字孪生技术正在成为城市交通管理的关键工具&#xff0c;支持系统的高效运行和安全保障。随着互联网、大数据和人工智能技术的进步&#xff0c;城市交通…

自写系统运行windows程序

运行已经基本正常了。 源代码在 https://gitee.com/enrique11/cxos.git