目标检测——YOLOR算法解读

论文:YOLOR-You Only Learn One Representation: Unifified Network for Multiple Tasks
作者:Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao
链接:https://arxiv.org/abs/2105.04206
代码:https://github.com/WongKinYiu/yolor


YOLO系列算法解读:

  • YOLOv1通俗易懂版解读
  • SSD算法解读
  • YOLOv2算法解读
  • YOLOv3算法解读
  • YOLOv4算法解读
  • YOLOv5算法解读
  • YOLOR算法解读
  • YOLOX算法解读

PP-YOLO系列算法解读:

  • PP-YOLO算法解读
  • PP-YOLOv2算法解读
  • PP-PicoDet算法解读
  • PP-YOLOE算法解读
  • PP-YOLOE-R算法解读

文章目录

  • 1、算法概述
  • 2、YOLOR细节
    • 2.1 隐性知识如何工作
    • 2.2 统一网络的隐性知识
  • 3、实验结果
    • 3.1 实验设置
    • 3.2 FPN特征对齐消融实验
    • 3.3 目标检测预测细化消融实验
    • 3.4 多任务规范表征消融实验
    • 3.5 隐式知识建模不同算子比较
    • 3.6 隐式知识提升目标检测


1、算法概述

人类可以通过视觉、听觉、触觉以及过去的经验来“理解”世界。经验可以通过正常学习(作者称之为显性知识),也可以通过潜意识(作者称之为隐性知识)来学习。即对于一段数据,人类可以从显性知识中直接学习到它,也可以从大脑中以前的经验(潜意识)中推导分析它。然而,经过训练的卷积神经网络(CNN)模型通常只能实现一个目标,即直接从数据中学习。一般来说,从训练过的CNN中提取出来的特征通常对其他类型的问题适应性较差。造成上述问题的主要原因是我们只从神经元中提取特征,而没有利用CNN中丰富的隐性知识。在真实人脑运行时,上述隐性知识可以有效地辅助大脑完成各种任务,如下图所示:
图1
隐性知识是指在潜意识中学习到的知识。然而,对于隐性学习如何运作以及如何获得隐性知识,目前还没有一个系统的定义。在神经网络的一般定义中,从浅层获得的特征通常称为显性知识,从深层获得的特征称为隐性知识。论文中将与观测数据(网络输入)直接对应的知识称为显性知识。对于模型中隐含的与观测无关的知识,我们称之为隐性知识。
作者提出了一个统一的网络来整合隐性知识和显性知识,使学习模型包含一个通用的表示,这个通用的表示使得子表示适合于各种任务。图2©说明了该统一网络体系结构。本文构建统一网络的方法是将压缩感知和深度学习结合起来。
图2
借鉴知乎@算法小乔画的YOLOR网络结构图,可以看到作者主要在输出层OutProcess中增加了两个隐性知识向量shift-Channels和Control-Channels,这里的隐性知识向量,就是单独初始化一个向量shape为[1,C,1,1], 其中C与前一层的输出outchannels一致,有点类似于通道注意力的意思,然后在训练过程中,参数随着训练优化更新。shift-Channels将隐性知识向量与前一层的特征通过相加Add的方式进行融合;Control-Channels将隐性知识向量与前一层的特征通过相乘Mul的方式进行融合。
YOLOR网络结构图


2、YOLOR细节

2.1 隐性知识如何工作

本文的主要目的是建立一个能够有效训练隐性知识的统一网络,因此在后续的研究中,我们首先将重点放在如何训练隐性知识和快速推理上。由于隐性表示zi与观测无关,我们可以把它看作一组常数张量Z={z1,z2,⋯,zk}。在本节中,我们将介绍作为常量张量的隐性知识如何应用于各种任务。

  • 多维空间降维
    在这里插入图片描述
    一个好的表征应该能够在它所属的多维空间中找到一个合适的投影,并有助于后续目标任务的顺利完成。例如,如图3所示,如果目标类别可以通过投影空间中的超平面成功分类,那将是最好的结果。在上面的例子中,我们可以利用投影向量的内积和隐式表示来达到降低流形空间维数的目的,有效地完成各种任务。
  • 内核空间对齐
    在这里插入图片描述
    在多任务和多头神经网络中,核空间失调是一个常见的问题,图4(a)举例说明了多任务和多头神经网络中的核空间失调。为了解决这个问题,我们可以对输出特征和隐式表示进行加法和乘法,这样就可以对核空间进行平移、旋转和缩放,以对齐神经网络的每个输出核空间,如图4(b)所示。上述操作模式可广泛应用于不同领域,如特征金字塔网络(FPN)中大目标与小目标的特征对齐、利用知识蒸馏来对齐大模型与小模型、零样本迁移等问题。
  • 更多的功能
    在这里插入图片描述
    除了可以应用于不同任务的功能外,隐性知识还可以扩展为更多的功能。如图5所示,通过引入加法,可以使神经网络预测中心坐标的偏移量。还可以引入乘法来自动搜索锚点的超参数集,这是基于anchor的目标检测经常需要的。此外,点乘法和串联可分别用于执行多任务特征选择和为后续计算设置前提条件。

2.2 统一网络的隐性知识

在本节中,我们将比较传统网络和提出的统一网络的目标函数,并解释为什么引入隐性知识对训练多用途网络很重要。同时,我们还将详细阐述本文提出的方法。

  • 卷积网络
    对于卷积网络的目标函数,如下:
    在这里插入图片描述
    其中x是观测量,即网络的输入,θ代表卷积网络的参数集,fθ(.)代表卷积网络运行;卷积网络训练,即最小化误差ε,使输入x经过卷积网络尽可能贴近真实数据y。
    在这里插入图片描述
    如图6(a)所示,我们需要对同一标注有不同的样本,以获取数据的丰富性。换句话说,我们期望得到的解空间仅对当前任务ti是有区别的,而对各种除ti以外的潜在任务是不变的,其中T={t1,⋯,tn}。
    对于一般用途的神经网络,我们希望所得到的表示能服务于T。因此,我们需要放松ε,以便在流形空间上同时找到每个任务的解,如图6(b)所示。然而,上述要求使得我们不可能用简单的数学方法,如一个one-hot向量的最大值或欧氏距离的阈值来求解ti。为了解决这个问题,我们必须对错误项ε进行建模,以便为不同的任务找到解决方案,如图6( c)所示。
  • 统一网络
    为了训练所提出的统一网络,我们将显性知识和隐性知识结合起来对误差项进行建模,然后用它来指导多用途网络的训练过程。相应的训练公式如下:
    在这里插入图片描述
    其中ϵex和ϵim是分别对观测值x和潜在编码z的显式误差和隐式误差进行建模的运算。gϕ这里是一个特定于任务的操作,用于从显性知识和隐性知识中组合或选择信息。
    已有的将显性知识整合到fθ(.)的方法,可以将(2)改写为(3)。
    在这里插入图片描述
    其中*表示了f和g之间的可能操作。可能是加法、乘法或者串联。
    如果我们把误差项的推导过程扩展到处理多个任务,我们可以得到如下公式:
    在这里插入图片描述
    其中,Z={z1,z2,⋯,zT}是不同任务的隐式编码,Φ是用于从Z生成隐性知识表示的参数,Ψ用于从显式表示和隐式表示的不同组合中计算最终输出参数。
    对于不同的任务 ,我们可以使用下面的公式获得预测:
    在这里插入图片描述
    对于所有的任务我们都从一个统一表示fθ(x),完成特定任务的隐式表示gϕ(z)开始,最后用任务识别器dΨ完成不同的任务。
  • 隐性知识的建模
    隐性知识可用如下方式建模:
    对于Vector/Matrix/Tensor,使用向量z直接作为隐性知识的先验,直接作为隐式表示。(z)
    对于Neural Network,使用向量z作为隐性知识的先验,然后使用权值矩阵进行线性组合或非线性化,从而成为隐式表示。(Wz)
    对于Matrix Factorization,使用多个向量作为隐性知识的先验,这些隐性先验由Z和系数c形成隐式表示。(ZTc)
  • Training
    如果模型一开始没有任何先验的隐性知识,也就是说,它不会对显式表征fθ(x)产生任何影响。那我们就直接初始化一个向量z即可,对于结合操作是相加或串连的,z服从N(0,σ),对于结合操作是乘法的,z服从N(1,σ),这里σ初始化的时候都是接近于0的。z和Φ都是在训练过程中遵循梯度反向传播算法进行优化的。
  • Inference
    因为隐性知识与观测量x无关,所以无论gϕ多么复杂,在推理过程之前都可以被简化为一组常数张量。

3、实验结果

3.1 实验设置

在这里插入图片描述
本文通过FPN中的feature alignment(特征对齐)、目标检测中的prediction refinement(预测细化)、单模型中的multi-task learning(多任务学习)来应用implicit knowledge(隐式知识)(注:本文的多任务学习指特征嵌入、多标签图像分类和目标检测)。使用YOLOV4-CSP作为baseline model,隐式知识添加位置如上图所示,所有训练超参数与Scaled-YOLOv4一致。

3.2 FPN特征对齐消融实验

使用简单的向量隐式表征和加法算子,在FPN的每一个特征映射层添加隐式知识进行特征对齐,各个指标均获得了提升,如表1所示。
在这里插入图片描述

3.3 目标检测预测细化消融实验

使用简单的向量隐式表征和加法算子,在YOLO的每一个输出层添加隐式知识进行预测细化,大部分指标都获得到了一定的增益,如表2所示。
在这里插入图片描述

3.4 多任务规范表征消融实验

当需要同时训练一个被多个任务共享的模型时,由于损失函数的联合优化过程是必须执行的,因此在执行过程中往往会出现多方相互拉动的情况,这种情况将导致最终的整体性能比单独训练多个模型然后集成它们要差。为了解决这个问题,作者提出为训练多任务训练一个规范的表征,通过给每个任务分支引入隐式表征增强表征能力,表3展示了使用简单的向量隐式表征和加法算子进行不同联合训练方式的结果,(检测和特征嵌入联合训练,引入加法隐式表征)取得了最好的对比结果。
在这里插入图片描述

3.5 隐式知识建模不同算子比较

在这里插入图片描述
表4显示了图10中不同算子融合显式表征与隐式表征的结果。
在特征对齐实验中,相加与串联(concat)操作能够提升性能表现,相乘有所下降。特征对齐的实验结果完全符合其物理特性,因为它必须处理全局偏移和所有单个簇的缩放。
在预测细化实验中,由于concat会增加输出维度,所以只比较相加与相乘的效果,在这里相乘的效果更好。这是由于中心偏移在执行预测时使用加法解码,而锚框尺度使用乘法解码,而中心坐标是以网格为界的,影响较小,但人工设置的锚框具有较大的优化空间,因此改进更为显著。
在这里插入图片描述

3.6 隐式知识提升目标检测

按照Scaled-YOLOv4训练过程,先从头训练 300 epochs,然后微调150 epochs,表8展示了目标检测中引入隐式知识的优势。表9与SOTA方法进行了比较,值得注意的是YOLOR并没有增加额外的数据和标注做训练,只通过引入隐式知识的统一网络,YOLOR不仅达到了足可以和SOTA方法比拟的结果,而且速度非常快。
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/473667.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用ansible批量修改操作系统管理员账号密码

一、ansible server端配置 1、对于Linux主机配置免密登录ssh-copy-id -i ~/.ssh/id_rsa.pub rootremote_ip 2、在/etc/ansible/hosts文件中添加相应主机IP 3、对于Windows主机需要在/etc/ansible/hosts文件中进行以下配置 192.168.83.132 ansible_ssh_useradministrator an…

centos重启防火墙导致docker不可用

重启容器报错 错误原因 docker服务启动时定义的自定义链docker,由于centos7 firewall 被清掉 firewall的底层是使用iptables进行数据过滤,建立在iptables之上,这可能会与 Docker 产生冲突。 当 firewalld 启动或者重启的时候,将…

【大数据】Redis介绍和使用

【大数据】Redis介绍和使用 介绍服务器搭建redis支持的五种数据类型数据类型应用场景总结 介绍 Redis(Remote Dictionary Server)是一个开源的基于内存的数据结构存储系统,它提供了丰富的数据结构(如字符串、哈希表、列表、集合、…

HTML静态网页成品作业(HTML+CSS)——动漫猫和老鼠网页(1个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,未使用Javacsript代码,共有1个页面。 二、作品演示 三、代…

[C语言]——内存函数

目录 一.memcpy使用和模拟实现(内存拷贝) 二.memmove 使用和模拟实现 三.memset 函数的使用(内存设置) 四.memcmp 函数的使用 C语言中规定: memcpy拷贝的就是不重叠的内存memmove拷贝的就是重叠的内存但是在VS202…

Vue3组件的注册

组件是Vue.js中的一个重要概念,它是一种抽象,是一个可以复用的Vue.js实例。它拥有独一无二的组件名称,可以扩展HTML元素,以组件名称的方式作为自定义的HTML标签。 在大多数系统网页中,网页都包含header、body、footer…

流畅的 Python 第二版(GPT 重译)(十)

第十八章:with、match 和 else 块 上下文管理器可能几乎与子例程本身一样重要。我们只是初步了解了它们。[…] Basic 有一个 with 语句,在许多语言中都有 with 语句。但它们的功能不同,它们都只是做一些非常浅显的事情,它们可以避…

神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)

目录 一、神经网络简介 二、深度学习要解决的问题 三、深度学习的应用 四、计算机视觉 五、计算机视觉面临的挑战 六、得分函数 七、损失函数 八、前向传播 九、反向传播 十、神经元的个数对结果的影响 十一、正则化与激活函数 一、神经网络简介 神经网络是一种有监督…

排水管网信息化平台:科技赋能,助力城市水环境管理升级

排水管网承担着城市污水、雨水的收集与排出的双重任务,是城市重要的基础设施。城市化率的不断提高,对城市基础设施的性能也提出了考验。 排水管网存在窨井监测设备不足、管段淤积、无序监管、污水超标排放等问题突出,导致部分污水直排受纳水…

数据可视化:守护食品安全的利器

在当今食品安全日益受到关注的背景下,数据可视化技术成为保障食品安全的重要利器。通过数据可视化,我们能够实时监测食品生产、加工、运输和销售等环节,及时发现和解决食品安全问题,保障公众健康。数据可视化如何为食品安全保驾护…

手撕算法-二叉搜索树的最近公共祖先

描述:分析:二叉搜索树没有相同值的节点,因此分别从根节点往下利用二叉搜索树较大的数在右子树,较小的数在左子树,可以轻松找到p、q: //节点值都不同,可以直接用值比较 while(node.val ! target…

Flutter Widget:State 状态管理

响应式的编程框架永恒的主题——“状态(State)管理” 无论是在 React/Vue/Flutter 中讨论的问题和解决的思想都是一致的。 StatefulWidget的状态应该被谁管理?Widget本身?父 Widget ?都会?还是另一个对象? 下面是官…

【每日一题】1969. 数组元素的最小非零乘积-2024.3.20

题目: 1969. 数组元素的最小非零乘积 给你一个正整数 p 。你有一个下标从 1 开始的数组 nums ,这个数组包含范围 [1, 2p - 1] 内所有整数的二进制形式(两端都 包含)。你可以进行以下操作 任意 次: 从 nums 中选择两…

Java与Go:指针

在计算机内存中,每个变量都有一个唯一的地址,指针就是用来保存这个地址的变量。通过指针,我们可以间接地访问和修改存储在该地址处的数据。今天我们来聊一聊Java和Go指针,预告一下,我们需要借助C语言做一些小小的比较。…

SQL61 检索并列出已订购产品的清单

order by cust_name 升序 order by cust_name desc 降序

计算机网络面经-什么是IPv4和IPv6?

前言 Internet协议(IP)是为连接到Internet网络的每个设备分配的数字地址。它类似于电话号码,是一种独特的数字组合,允许用户与他人通信。IP地址主要有两个主要功能。首先,有了IP,用户能够在Internet上被识别…

腾讯云GPU云服务器简介_GPU服务器购买指南_GPU云服务器操作

腾讯云GPU服务器是提供GPU算力的弹性计算服务,腾讯云GPU服务器具有超强的并行计算能力,可用于深度学习训练、科学计算、图形图像处理、视频编解码等场景,腾讯云百科txybk.com整理腾讯云GPU服务器租用价格表、GPU实例优势、GPU解决方案、GPU软…

One Nav一为主题最新V4.1602版官方正版学习版

在现今数字化快速发展的时代,信息的获取与整合变得愈发重要。为此,我们推出了一款功能强大且独具特色的WordPress主题——One Nav,又称“一导航主题”。这款主题集网址、app、资源、书籍、影视等内容导航于一体,为用户提供了一站式…

java NIO群聊系统

demo要求: 1)编写一个NIO群聊系统,实现服务器端和客户端之间的数据简单通讯(非阻塞) 2)实现多人群聊 3)服务器端:可以监测用户上线,离线,并实现消息转发功…

Open World Object Detection in the Era of Foundation Models

Open World Object Detection in the Era of Foundation Models 摘要介绍相关工作开放词汇物体检测开放世界目标检测类无关的目标检测3.真实世界目标检测基准3.1 数据集细节3.2 基准架构3.3 什么是一个未知对象4. 利用基准模型用于开放世界目标检测4.1 背景4.2 属性生成4.3 属性…