Amuse .NET application for stable diffusion

Amuse

github地址:https://github.com/tianleiwu/Amuse

.NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system 

Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise

Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
  • Image To Image: Transform images seamlessly using advanced machine learning models.
  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn't just a tool; it's a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it's about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.

  • Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it's digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It's used for tasks like photo restoration and object removal, creating seamless and convincing results.

Model Manager

Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Getting Started
Get started now with our helpful documentation: https://github.com/Stackyard-AI/Amuse/blob/master/Docs/GettingStarted.md

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

DeviceRequirement
CPUAny modern Intel/AMD
AMD GPURadeon HD 7000 series and above
IntelHD Integrated Graphics and above (4th-gen core)
NVIDIAGTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

ModelDevicePrecisionRAM/VRAM
Stable DiffusionGPU16~4GB
Stable DiffusionCPU/GPU32~8GB
SDXLCPU/GPU32~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

BuildDeviceRequirements
CPUCPUNone
DirectMLCPU, AMD GPU, Nvidia GPUAt least Windows10
CUDANvidia GPUCUDA 11 and cuDNN toolkit
TensorRTNvidia GPUCUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

DeviceModelFPS
GTX 2080LCM_Dreamshaper_v7_Olive_Onnx1-2
RTX 3090LCM_Dreamshaper_v7_Olive_Onnx3-4

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/473249.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

跨越时空的纽带:探索Facebook如何连接人与人

引言 Facebook作为全球最大的社交媒体平台之一,已经成为了人们日常生活中不可或缺的一部分。它不仅仅是一个社交网络,更是连接人与人、人与世界的纽带。在这篇文章中,我们将深入探讨Facebook如何跨越时空,连接人与人之间的关系&a…

机器学习-06-回归算法

总结 本系列是机器学习课程的系列课程,主要介绍机器学习中回归算法,包括线性回归,岭回归,逻辑回归等部分。 参考 fit_transform,fit,transform区别和作用详解!!!!!&am…

spring boot学习第十四篇:使用AOP编程

一、基本介绍 1,什么是 AOP (1)AOP 为 Aspect Oriented Programming 的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术。 (2)利用 AOP…

Cronos zkEVM 基于 Covalent 数据可用性 API,推动其 Layer2 DeFi 生态更好地发展

在一项旨在显著改善 DeFi 生态的战略举措中,Cronos 与 Covalent Network(CQT)携手合作,以期待 Cronos zkEVM 的推出。这一整合,预计将进一步降低以太坊生态系统的交易成本、提升交易速度,并带来更好的交易体…

ES的集群节点发现故障排除指南(1)

本文是ES官方文档关于集群节点发现与互联互通的问题排查指南内容。 集群节点发现是首要任务 集群互连,重中之重! 在大多数情况下,发现和选举过程会迅速完成,并且主节点会长时间保持当选状态。 如果集群没有稳定的主节点&#xf…

四、Elasticsearch 进阶

自定义目录 4.1 核心概念4.1.1 索引(Index)4.1.2 类型(Type)4.1.3 文档(Document)4.1.3 字段(Field)4.1.5 映射(Mapping)4.1.6 分片(Shards&#…

C语言指针与地址基础学习(取地址运算)

C语言指针与地址基础学习&#xff08;取地址运算&#xff09; 取地址运算&#xff1a;&运算符取得变量的地址代码示例一运算符& 取地址运算&#xff1a;&运算符取得变量的地址 代码示例一 #include<stdio.h> int main() {int a;a 6;printf("sizeof(i…

区块链革命:探索 Web3 的全球影响

引言 自比特币的诞生以来&#xff0c;区块链技术已经成为全球范围内备受瞩目的创新之一。其去中心化、不可篡改、透明的特性不仅使其成为数字货币领域的核心技术&#xff0c;还在金融、供应链管理、智能合约等领域展现出了巨大的应用潜力。随着区块链技术的不断发展&#xff0…

Jackson 2.x 系列【3】解析器 JsonParser

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 前言2. 解析原理3. 案例演示3.1 创建 JsonParser3.2 解析3.3 读取3.4 测试 1. 前…

【Qt】使用Qt实现Web服务器(三):QtWebApp中HttpRequest和HttpResponse

1、HttpRequest 1.1 示例 1)在Demo1的Dump HTTP request示例 在浏览器中输入http://127.0.0.1:8080点击Dump HTTP request 2)切换到页面:http://127.0.0.1:8080/dump 该页面显示请求和响应的内容: Request: Method: GET Path: /dump Version: HTTP/1.1 Headers: accep…

【C语言】【牛客】BC136 KiKi判断上三角矩阵

文章目录 题目 BC136 KiKi判断上三角矩阵思路代码呈现 题目 BC136 KiKi判断上三角矩阵 链接: link 思路 这题很简单但是再牛客中属于中等题 我们通过读题发现 2<n<10 &#xff0c;所以我们首先创建一个变量 n 以及一个 10*10 个元素数组 然后题目是判断该矩阵是否是…

Android 系统开发工具大全

写给应用开发的 Android Framework 教程——玩转AOSP篇之 Android 系统开发工具推荐 下面推荐的是我常用的工具&#xff0c;如果你有好用的开发工具欢迎在评论区留言讨论交流。 1. SSH 服务与 Tabby Terminal SSH 服务使得我们在其他平台上通过 SSH 客户端程序即可访问到我们…

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiTCN…

Monaco Editor系列(一)启动项目与入门示例解析

前言&#xff1a;作为一名程序员&#xff0c;我们工作中的每一天都在与代码编辑器打交道&#xff0c;相信各位前端程序员对 VS Code 一定都不陌生&#xff0c;VS Code 可以为我们提供代码高亮、代码对比等等功能&#xff0c;让我们在开发的时候&#xff0c;不需要对着暗淡无光的…

Redis模拟小例子

我们模拟游戏中的一个角色&#xff0c;这个角色被动技能就是受到攻击的时候&#xff0c;会有十分之三的概率爆出金币&#xff0c;而在一个回合之中&#xff0c;爆出的金币个数有限制&#xff0c;限制为两个&#xff0c;假设攻击是按照一定的频率进行的&#xff0c;而一个回合的…

海外云手机如何帮助亚马逊引流?

随着全球化的推进&#xff0c;出海企业和B2B外贸企业越来越注重海外市场的开拓&#xff0c;这已成为企业争夺市场份额的重要策略。本文将重点探讨海外云手机在优化亚马逊店铺引流方面的作用和优势。 海外云手机是一种在云端运行的虚拟手机&#xff0c;能够在单一芯片上多开几个…

20---复位电路设计

视频链接 复位电路设计01_哔哩哔哩_bilibili 复位电路设计 1、复位介绍 复位电路又叫初始化电路&#xff0c;它的作用是将芯片的工作状态回到初始状态&#xff01; 复位电路在硬件设计中至关重要&#xff0c;在实际调试的过程中&#xff0c;与复位相关的点必核查&#xff…

极路由4获取不到local_token和uuid的解决方案

今天淘了个二手极路由4(HC5962)&#xff0c;想刷个Openwrt系统来着&#xff0c;就按着网上的教程来进行。 打开极路由ROOT local-ssh利用工具 (hiwifi.wtf)这个网站&#xff0c;然后第一步获取local_token就出问题了&#xff0c;显示的字是"找不到文件..."&#xff…

Zookeeper(五)Zokeeper 环境搭建与Curator使用

目录 一 环境搭建1.1 单机环境搭建1.2 可视化工具ZooKeeper Assistant1.3 集群环境搭建 二 常用命令1.1 命令行语法1.2 数据节点信息1.3 节点类型 三 CuratorAPI使用3.1 依赖3.1 创建会话3.2 基本使用增删改查3.3 ACL权限控制3.4 分布式锁3.5 分布式计数器3.6 分布式Barrier3.7…

【python】2.pycharm中请选择有效的python解释器

欢迎来CILMY23的博客喔&#xff0c;本篇为【python】2.pycharm中请选择有效的python解释器&#xff0c;感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言 在上一篇博客中&#xff0c;我们已经在电脑上安装了python3.12.2和pycharm&#xff0c;本期…