四、Elasticsearch 进阶

自定义目录

  • 4.1 核心概念
    • 4.1.1 索引(Index)
    • 4.1.2 类型(Type)
    • 4.1.3 文档(Document)
    • 4.1.3 字段(Field)
    • 4.1.5 映射(Mapping)
    • ==4.1.6 分片(Shards)==
    • ==4.1.7 副本(Replicas)==
    • 4.1.8 分配(Allocation)
  • 4.2 系统架构
  • 4.3 分布式集群
    • 4.3.1 单节点集群
    • 4.3.2 故障转移
    • 4.3.3 水平扩容
    • 4.3.4 应对故障
  • ==4.4 路由计算==
  • ==4.5 分片控制==
    • 4.5.1 写流程
    • 4.5.2 读流程
    • 4.5.3 更新流程
    • 4.5.4 多文档操作流程
  • 4.6 分片原理

4.1 核心概念

4.1.1 索引(Index)

一个索引就是一个拥有几分相似特征的文档的集合。在一个集群中,可以定义任意多的索引。

4.1.2 类型(Type)

在一个索引中,你可以定义一种或多种类型。(类似于MySQL中的表)
在 ES 7.x 中,默认不再支持自定义索引类型(默认类型为:_doc)

4.1.3 文档(Document)

ElasticSearch中 一条数据就是一个文档

4.1.3 字段(Field)

相当于是数据表的字段,是文档的属性。

4.1.5 映射(Mapping)

对 ES 中的每个字段做一些限制,这个就称之映射

如:某个字段的数据类型、默认值、分析器、是否被索引等等。这些都是映射里面可以设置的

4.1.6 分片(Shards)

一个索引可以存储超出单个节点硬件限制的大量数据。

比如,一个具有 10 亿文档数据的索引占据 1TB 的磁盘空间,而任一节点都可能没有这样大的磁盘空间。或者单个节点处
理搜索请求,响应太慢。

为了解决这个问题,Elasticsearch 提供了将索引划分成多份的能力,每一份就称之为分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。

分片很重要,主要有两方面的原因:

  • 允许你水平分割 / 扩展你的内容容量。
  • 允许你在分片之上进行分布式的、并行的操作,进而提高性能/吞吐量。

至于一个分片怎样分布,它的文档怎样聚合和搜索请求,是完全由 Elasticsearch 管理的,对于作为用户的你来说,这些都是透明的,无需过分关心。

4.1.7 副本(Replicas)

在一个网络 / 云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch 允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片(副本)。

复制分片之所以重要,有两个主要原因:

  • 在分片/节点失败的情况下,提供了高可用性。因为这个原因,复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。
  • 扩展你的搜索量/吞吐量,因为搜索可以在所有的副本上并行运行

总之,每个索引可以被分成多个分片。一个索引也可以被复制 0 次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和副本(主分片的拷贝)。分片和副本的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变副本的数量,但是你事后不能改变分片的数量。

4.1.8 分配(Allocation)

将分片分配给某个节点的过程,包括分配主分片或者副本。



4.2 系统架构

一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同cluster.name 配置的节点组成, 它们共同承担数据和负载的压力。当有节点加入集群中或者从集群中移除节点时,集群将会重新平均分布所有的数据。

当一个节点被选举成为主节点时, 它将负责管理集群范围内的所有变更(例如增加、删除索引,或者增加、删除节点等。) 而主节点并不需要涉及到文档级别的变更和搜索等操作,所以当集群只拥有一个主节点的情况下,即使流量的增加它也不会成为瓶颈。

任何节点都可以成为主节点。我们的示例集群就只有一个节点,所以它同时也成为了主节点。

作为用户,我们可以将请求发送到集群中的任何节点 ,包括主节点。 每个节点都知道任意文档所处的位置,并且能够将我们的请求直接转发到存储我们所需文档的节点。 无论我们将请求发送到哪个节点,它都能负责从各个包含我们所需文档的节点收集回数据,并将最终结果返回給客户端。



4.3 分布式集群

4.3.1 单节点集群

我们在包含一个空节点的集群内创建名为 users 的索引,为了演示目的,我们将分配 3个主分片和一份副本(每个主分片拥有一个副本分片)

{
	 "settings" : {
		 "number_of_shards" : 3,
		 "number_of_replicas" : 1
	 }
}

我们的集群现在是拥有一个索引的单节点集群。所有 3 个主分片都被分配在 node-1 。
在这里插入图片描述
在这里插入图片描述



4.3.2 故障转移

当集群中只有一个节点在运行时,意味着会有一个单点故障问题——没有冗余。

幸运的是,我们只需再启动一个节点即可防止数据丢失。当你在同一台机器上启动了第二个节点时,只要它和第一个节点有同样的 cluster.name 配置,它就会自动发现集群并加入到其中。

但是在不同机器上启动节点的时候,为了加入到同一集群,你需要配置一个可连接到的单播主机列表。之所以配置为使用单播发现,以防止节点无意中加入集群。只有在同一台机器上运行的节点才会自动组成集群。

如果启动了第二个节点,我们的集群将会拥有两个节点的集群 : 所有主分片和副本分片都已被分配
在这里插入图片描述
在这里插入图片描述

4.3.3 水平扩容

怎样为我们的正在增长中的应用程序按需扩容呢?

当启动了第三个节点,我们的集群将会拥有三个节点的集群 : 为了分散负载而对分片进行重新分配
在这里插入图片描述
在这里插入图片描述

但是如果我们想要扩容超过 6 个节点怎么办呢?
主分片的数目在索引创建时就已经确定了下来。实际上,这个数目定义了这个索引能够存储 的最大数据量。

但是,读操作——搜索和返回数据——可以同时被主分片 或 副本分片所处理,所以当你拥有越多的副本分片时,也将拥有越高的吞吐量

在运行中的集群上是可以动态调整副本分片数目的,我们可以按需伸缩集群。让我们把副本数从默认的 1 增加到 2

users 索引现在拥有 9 个分片:3 个主分片和 6 个副本分片。 这意味着我们可以将集群扩容到 9 个节点,每个节点上一个分片。相比原来 3 个节点时,集群搜索性能可以提升 3 倍

在这里插入图片描述
在这里插入图片描述

4.3.4 应对故障

我们关闭第一个节点,这时集群的状态为:关闭了一个节点后的集群。
在这里插入图片描述
我们关闭的节点是一个主节点。而集群必须拥有一个主节点来保证正常工作,所以发生的第一件事情就是选举一个新的主节点: Node 2 。在我们关闭 Node 1 的同时也失去了主分片 1 和 2 ,并且在缺失主分片的时候索引也不能正常工作。 如果此时来检查集群的状况,我们看到的状态将会为 red :不是所有主分片都在正常工作
在这里插入图片描述
幸运的是,在其它节点上存在着这两个主分片的完整副本, 所以新的主节点立即将这些分片在 Node 2 和 Node 3 上对应的副本分片提升为主分片, 此时集群的状态将会为yellow。



4.4 路由计算

当索引一个文档的时候,文档会被存储到一个主分片中。 Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?

这个过程是根据下面这个公式决定的:
在这里插入图片描述

routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。 routing 通过hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置

这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。

所有的文档 API( get 、 index 、 delete 、 bulk 、 update 以及 mget )都接受一个叫做 routing 的路由参数 ,通过这个参数我们可以自定义文档到分片的映射。一个自定义的路由参数可以用来确保所有相关的文档都被存储到同一个分片中



4.5 分片控制

4.5.1 写流程

4.5.2 读流程

4.5.3 更新流程

4.5.4 多文档操作流程



4.6 分片原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/473239.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言指针与地址基础学习(取地址运算)

C语言指针与地址基础学习&#xff08;取地址运算&#xff09; 取地址运算&#xff1a;&运算符取得变量的地址代码示例一运算符& 取地址运算&#xff1a;&运算符取得变量的地址 代码示例一 #include<stdio.h> int main() {int a;a 6;printf("sizeof(i…

区块链革命:探索 Web3 的全球影响

引言 自比特币的诞生以来&#xff0c;区块链技术已经成为全球范围内备受瞩目的创新之一。其去中心化、不可篡改、透明的特性不仅使其成为数字货币领域的核心技术&#xff0c;还在金融、供应链管理、智能合约等领域展现出了巨大的应用潜力。随着区块链技术的不断发展&#xff0…

Jackson 2.x 系列【3】解析器 JsonParser

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 前言2. 解析原理3. 案例演示3.1 创建 JsonParser3.2 解析3.3 读取3.4 测试 1. 前…

【Qt】使用Qt实现Web服务器(三):QtWebApp中HttpRequest和HttpResponse

1、HttpRequest 1.1 示例 1)在Demo1的Dump HTTP request示例 在浏览器中输入http://127.0.0.1:8080点击Dump HTTP request 2)切换到页面:http://127.0.0.1:8080/dump 该页面显示请求和响应的内容: Request: Method: GET Path: /dump Version: HTTP/1.1 Headers: accep…

【C语言】【牛客】BC136 KiKi判断上三角矩阵

文章目录 题目 BC136 KiKi判断上三角矩阵思路代码呈现 题目 BC136 KiKi判断上三角矩阵 链接: link 思路 这题很简单但是再牛客中属于中等题 我们通过读题发现 2<n<10 &#xff0c;所以我们首先创建一个变量 n 以及一个 10*10 个元素数组 然后题目是判断该矩阵是否是…

Android 系统开发工具大全

写给应用开发的 Android Framework 教程——玩转AOSP篇之 Android 系统开发工具推荐 下面推荐的是我常用的工具&#xff0c;如果你有好用的开发工具欢迎在评论区留言讨论交流。 1. SSH 服务与 Tabby Terminal SSH 服务使得我们在其他平台上通过 SSH 客户端程序即可访问到我们…

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiTCN…

Monaco Editor系列(一)启动项目与入门示例解析

前言&#xff1a;作为一名程序员&#xff0c;我们工作中的每一天都在与代码编辑器打交道&#xff0c;相信各位前端程序员对 VS Code 一定都不陌生&#xff0c;VS Code 可以为我们提供代码高亮、代码对比等等功能&#xff0c;让我们在开发的时候&#xff0c;不需要对着暗淡无光的…

Redis模拟小例子

我们模拟游戏中的一个角色&#xff0c;这个角色被动技能就是受到攻击的时候&#xff0c;会有十分之三的概率爆出金币&#xff0c;而在一个回合之中&#xff0c;爆出的金币个数有限制&#xff0c;限制为两个&#xff0c;假设攻击是按照一定的频率进行的&#xff0c;而一个回合的…

海外云手机如何帮助亚马逊引流?

随着全球化的推进&#xff0c;出海企业和B2B外贸企业越来越注重海外市场的开拓&#xff0c;这已成为企业争夺市场份额的重要策略。本文将重点探讨海外云手机在优化亚马逊店铺引流方面的作用和优势。 海外云手机是一种在云端运行的虚拟手机&#xff0c;能够在单一芯片上多开几个…

20---复位电路设计

视频链接 复位电路设计01_哔哩哔哩_bilibili 复位电路设计 1、复位介绍 复位电路又叫初始化电路&#xff0c;它的作用是将芯片的工作状态回到初始状态&#xff01; 复位电路在硬件设计中至关重要&#xff0c;在实际调试的过程中&#xff0c;与复位相关的点必核查&#xff…

极路由4获取不到local_token和uuid的解决方案

今天淘了个二手极路由4(HC5962)&#xff0c;想刷个Openwrt系统来着&#xff0c;就按着网上的教程来进行。 打开极路由ROOT local-ssh利用工具 (hiwifi.wtf)这个网站&#xff0c;然后第一步获取local_token就出问题了&#xff0c;显示的字是"找不到文件..."&#xff…

Zookeeper(五)Zokeeper 环境搭建与Curator使用

目录 一 环境搭建1.1 单机环境搭建1.2 可视化工具ZooKeeper Assistant1.3 集群环境搭建 二 常用命令1.1 命令行语法1.2 数据节点信息1.3 节点类型 三 CuratorAPI使用3.1 依赖3.1 创建会话3.2 基本使用增删改查3.3 ACL权限控制3.4 分布式锁3.5 分布式计数器3.6 分布式Barrier3.7…

【python】2.pycharm中请选择有效的python解释器

欢迎来CILMY23的博客喔&#xff0c;本篇为【python】2.pycharm中请选择有效的python解释器&#xff0c;感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言 在上一篇博客中&#xff0c;我们已经在电脑上安装了python3.12.2和pycharm&#xff0c;本期…

python社区垃圾分类管理平台的设计与实现flask-django-php-nodejs

近些年来&#xff0c;随着科技的飞速发展&#xff0c;互联网的普及逐渐延伸到各行各业中&#xff0c;给人们生活带来了十分的便利&#xff0c;社区垃圾分类管理平台利用计算机网络实现信息化管理&#xff0c;使整个社区垃圾分类管理的发展和服务水平有显著提升。 语言&#xf…

spark RDD 创建及相关算子

RDD编程入口 RDD编程入口对象是SparkContext对象&#xff0c;想要调用相关的计算api都需要通过构造出的sparkcontext对象调用 RDD的创建 通过并行化集合创建RDD&#xff08;本地集合转为分布式&#xff09;&#xff0c;api如下 rdd sc.parrallize(param1, param2)参数1是本…

设计模式之简单工厂模式详解

简单工厂模式 工厂模式&#xff1a;工厂方法模式&#xff1b; 低阶&#xff1a;简单工厂模式&#xff1b; 高阶&#xff1a;抽象工厂模式&#xff1b; 1&#xff09;概述 定义一个工厂类&#xff0c;根据参数的不同返回不同类的实例&#xff0c;被创建的实例通常都具有共同…

分布式游戏服务器

1、概念介绍 分布式游戏服务器是一种专门为在线游戏设计的大型系统架构。这种架构通过将游戏服务器分散部署到多台计算机&#xff08;节点&#xff09;上&#xff0c;实现了数据的分散存储和计算任务的并行处理。每个节点都负责处理一部分游戏逻辑和玩家请求&#xff0c;通过高…

TinTin Web3 Bounty 挑战杯开启,Sui 向你发出挑战邀请

以下文章来源于TinTinLand &#xff0c;作者TinTinLand。 2024 年开年最火的是什么&#xff1f; 对 Web3 来说&#xff0c;Bounty 任务应该是普通人获得行业“一杯羹”的重要捷径&#xff01; 通过深入学习各类 Web3 技术&#xff0c;凭借实战锻炼开发创新项目&#xff0c;就…

【Linux】传输层协议:TCP/UDP

目录 netstat pidof UDP协议 TCP协议 TCP协议段格式 TCP协议的相关机制 确认应答&#xff08;ACK&#xff09;机制 超时重传机制 连接管理机制 服务端状态转换 客户端状态转化 流量控制 流量控制常见问题&#xff1a; 滑动窗口 拥塞控制 延迟应答 面向字节流…