YOLOv9改进策略:卷积魔改 | 分布移位卷积(DSConv),提高卷积层的内存效率和速度

  💡💡💡本文改进内容: YOLOv9如何魔改卷积进一步提升检测精度?提出了一种卷积的变体,称为DSConv(分布偏移卷积),其可以容易地替换进标准神经网络体系结构并且实现较低的存储器使用和较高的计算速度。 DSConv将传统的卷积内核分解为两个组件:可变量化内核(VQK)和分布偏移

yolov9-c-DSConv summary: 962 layers, 50999590 parameters, 50999558 gradients, 234.7 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.DSConv介绍

论文: https://arxiv.org/pdf/1901.01928v1.pdf

 摘要:提出了一种卷积的变体,称为DSConv(分布偏移卷积),其可以容易地替换进标准神经网络体系结构并且实现较低的存储器使用和较高的计算速度。 DSConv将传统的卷积内核分解为两个组件:可变量化内核(VQK)和分布偏移。 通过在VQK中仅存储整数值来实现较低的存储器使用和较高的速度,同时通过应用基于内核和基于通道的分布偏移来保持与原始卷积相同的输出。 我们在ResNet50和34以及AlexNet和MobileNet上对ImageNet数据集测试了DSConv。 我们通过将浮点运算替换为整数运算,在卷积内核中实现了高达14x的内存使用量减少,并将运算速度提高了10倍。 此外,与其他量化方法不同,我们的工作允许对新任务和数据集进行一定程度的再训练。

 

        DSConv是一种深度可分离卷积(Depthwise Separable Convolution)的变体,它在计算机视觉领域被广泛使用。深度可分离卷积是一种轻量级卷积,它将标准卷积拆分为两个步骤:深度卷积和逐点卷积。深度卷积只在单个通道上进行卷积,并在每个通道上应用一个独立的卷积核。逐点卷积在所有通道上应用一个卷积核,以组合深度卷积的结果。DSConv相比于深度可分离卷积的优势在于它使用了一个可学习的卷积核来进一步提高模型的表现。

 

    

3.DSConv加入到YOLOv9

3.1新建py文件,路径为models/Conv/DSConv.py

###################### DSConv  ####     start   by  AI&CV  ###############################
import torch
import torch.nn.functional as F
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.utils import _pair
import math

from models.common import Conv,autopad
 
class DSConv(_ConvNd):  #https://arxiv.org/pdf/1901.01928v1.pdf
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=None, dilation=1, groups=1, padding_mode='zeros', bias=False, block_size=32, KDSBias=False, CDS=False):
        padding = _pair(autopad(kernel_size, padding, dilation))
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        dilation = _pair(dilation)
 
        blck_numb = math.ceil(((in_channels)/(block_size*groups)))
        super(DSConv, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            False, _pair(0), groups, bias, padding_mode)
 
        # KDS weight From Paper
        self.intweight = torch.Tensor(out_channels, in_channels, *kernel_size)
        self.alpha = torch.Tensor(out_channels, blck_numb, *kernel_size)
 
        # KDS bias From Paper
        self.KDSBias = KDSBias
        self.CDS = CDS
 
        if KDSBias:
            self.KDSb = torch.Tensor(out_channels, blck_numb, *kernel_size)
        if CDS:
            self.CDSw = torch.Tensor(out_channels)
            self.CDSb = torch.Tensor(out_channels)
 
        self.reset_parameters()
 
    def get_weight_res(self):
        # Include expansion of alpha and multiplication with weights to include in the convolution layer here
        alpha_res = torch.zeros(self.weight.shape).to(self.alpha.device)
 
        # Include KDSBias
        if self.KDSBias:
            KDSBias_res = torch.zeros(self.weight.shape).to(self.alpha.device)
 
        # Handy definitions:
        nmb_blocks = self.alpha.shape[1]
        total_depth = self.weight.shape[1]
        bs = total_depth//nmb_blocks
 
        llb = total_depth-(nmb_blocks-1)*bs
 
        # Casting the Alpha values as same tensor shape as weight
        for i in range(nmb_blocks):
            length_blk = llb if i==nmb_blocks-1 else bs
 
            shp = self.alpha.shape # Notice this is the same shape for the bias as well
            to_repeat=self.alpha[:, i, ...].view(shp[0],1,shp[2],shp[3]).clone()
            repeated = to_repeat.expand(shp[0], length_blk, shp[2], shp[3]).clone()
            alpha_res[:, i*bs:(i*bs+length_blk), ...] = repeated.clone()
 
            if self.KDSBias:
                to_repeat = self.KDSb[:, i, ...].view(shp[0], 1, shp[2], shp[3]).clone()
                repeated = to_repeat.expand(shp[0], length_blk, shp[2], shp[3]).clone()
                KDSBias_res[:, i*bs:(i*bs+length_blk), ...] = repeated.clone()
 
        if self.CDS:
            to_repeat = self.CDSw.view(-1, 1, 1, 1)
            repeated = to_repeat.expand_as(self.weight)
            print(repeated.shape)
 
        # Element-wise multiplication of alpha and weight
        weight_res = torch.mul(alpha_res, self.weight)
        if self.KDSBias:
            weight_res = torch.add(weight_res, KDSBias_res)
        return weight_res
 
    def forward(self, input):
        # Get resulting weight
        #weight_res = self.get_weight_res()
 
        # Returning convolution
        return F.conv2d(input, self.weight, self.bias,
                            self.stride, self.padding, self.dilation,
                            self.groups)
 
class DSConv2D(Conv):
    def __init__(self, inc, ouc, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__(inc, ouc, k, s, p, g, d, act)
        self.conv = DSConv(inc, ouc, k, s, p, g, d)
 

 
###################### DSConv  ####     END   by  AI&CV  ###############################

3.2修改yolo.py

1)首先进行引用

from models.Conv.DSConv import DSConv2D

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入DSConv2D

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
            Conv, AConv, ConvTranspose, 
            Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
            RepNCSPELAN4, SPPELAN,DSConv2D}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]

3.3 yolov9-c-DSConv.yaml

# YOLOv9

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3

   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5

   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7

   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, DSConv2D, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, DSConv2D, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   
   
   
   # detection head

   # detect
   [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/470819.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二、Kubernetes(k8s)中部署项目wordpress(php博客项目,数据库mysql)

前期准备 1、关机顺序 2、开机顺序 (1)、k8s-ha1、k8s-ha2 (2)、master01、master02、master03 (3)、node01、node02 一、集群服务对外提供访问,需要通过Ingress代理发布域名 mast01上传 ingress-nginx.yaml node01、node02 上传 ingress-nginx.tar 、kube-webh…

【知识库系统】JWT实现前后端分离验证

本文会先从理论和实践两部分讲述如何去理解和实现通过JWT进行身份认证。 一、理论 1. SpringSecurity 默认的认证是需要通过 UsernamePasswordAuthenticationFilter 进行认证的,该过滤器认证前,会到 SecurityContextHolder 中寻找是否有符合的 Authent…

Issue 2046:Missing array size check in NewFixedArray

文章目录 环境搭建漏洞分析漏洞触发 漏洞利用总结参考 环境搭建 sudo apt install pythongit reset --hard 64cadfcf4a56c0b3b9d3b5cc00905483850d6559 export DEPOT_TOOLS_UPDATE0 gclient sync -D// debug version tools/dev/v8gen.py x64.debug ninja -C out.gn/x64.debug/…

java数据结构与算法刷题-----LeetCode135. 分发糖果

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 1. 左右遍历2. 进阶:常数空间遍历,升序降…

Visual Studio - 添加快捷键图标

Visual Studio - 添加快捷键图标 1. Text Editor Toolbar Options -> Add or Remove Buttons -> Customize2. Toolbars3. Commands -> Debug4. Add Command...References 1. Text Editor Toolbar Options -> Add or Remove Buttons -> Customize 2. Toolbars B…

并发编程之synchronized的详细解析

4.2 synchronized 解决方案 应用之互斥 为了避免临界区的竞态条件发生,有多种手段可以达到目的。 阻塞式的解决方案:synchronized,Lock 非阻塞式的解决方案:原子变量 本次课使用阻塞式的解决方案:synchronized&am…

长安链智能合约标准协议第二草案——BNS与DID协议邀请社区用户评审

长安链智能合约标准协议 在智能合约编写过程中,不同的产品及开发人员对业务理解和编程习惯不同,即使同一业务所编写的合约在具体实现上也可能有很大差异,在运维或业务对接中面临较大的学习和理解成本,现有公链合约协议规范又不能完…

C++:类和对象(上篇)

目录: 一:面向对象和过程的介绍 二:类的引入 三:类的定义 四:类的访问限定符以及封装 五:类的作用域 六:类的实例化 七:类对象大小的计算 八:类成员函数的this指…

C语言经典算法-7

文章目录 其他经典例题跳转链接36.排序法 - 改良的选择排序37.快速排序法(一)38.快速排序法(二)39.快速排序法(三)40.合并排序法 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三…

JJJ:改善ubuntu网速慢的方法

Ubuntu 系统默认的软件下载源由于服务器的原因, 在国内的下载速度往往比较慢,这时我 们可以将 Ubuntu 系统的软件下载源更改为国内软件源,譬如阿里源、中科大源、清华源等等, 下载速度相比 Ubuntu 官方软件源会快很多!…

Linux实践 - 命令行解释器 简易版

~~~~ 前言解决的问题为什么shell要以子进程的方式执行我们的命令?为什么直接使用程序名ls,而不是路径/usr/bin/ls? 头文件包含命令行提示符接受用户命令行输入解析用户的输入内建命令&&特殊处理ls 时目录等文件不带高亮颜色cd时目录不…

electron-builder 打包问题,下载慢解决方案

目录 问题说明设置下载源 ?解决方案思路下载Electron下载winCodeSign下载nsis下载nsis-resources 总结 问题说明 项目使用了Electron,在第一次打包时会遇见下载慢,导致打包进度几乎停滞不前,甚至可能直接报错 其实这是因为Electr…

【SpringBoot3+Mybatis】框架快速搭建

文章目录 GitHub 项目一、依赖二、 配置文件三、启动类四、SpringBoot3兼容Druid报错五、工具类5.1 结果封装类5.2 解决枚举类5.3 MD5加密工具类 GitHub 项目 springboot-part——springboot-integrate-07 Mybatis-plus版完整CRUD项目文档记录: 【SpringBoot3Myba…

【Python循环6/6】循环的综合运用

目录 回顾 for循环遍历列表 for循环进行累加/累乘的计算 复杂的条件判断 嵌套 嵌套循环 练习 遍历整数列表 总结 回顾 在之前的博文中,我们学习了for计数循环;while条件循环;以及跳出循环的两种方法break,continu…

CMU 10-414/714: Deep Learning Systems --hw3

实现功能 在ndarray.py文件中完成一些python array操作 我们实现的NDArray底层存储就是一个一维向量,只不过会有一些额外的属性(如shape、strides)来表明这个flat array在维度上的分布。底层运算(如加法、矩阵乘法)都…

幻兽帕鲁游戏搭建(docker)

系列文章目录 第一章: 幻兽帕陆游戏搭建 文章目录 系列文章目录前言一、镜像安装1.创建游戏目录2.拉取镜像3.下载配置文件4.启动游戏 二、自定义配置总结 前言 这段时间一直在写论文还有找工作,也没学啥新技术,所以博客也很长时间没写了&am…

【滑动窗口、矩阵】算法例题

目录 三、滑动窗口 30. 长度最小的子数组 ② 31. 无重复字符的最长子串 ② 32. 串联所有单词的子串 ③ 33. 最小覆盖子串 ③ 四、矩阵 34. 有效的数独 ② 35. 螺旋矩阵 ② 36. 旋转图像 ② 37. 矩阵置零 ② 38. 生命游戏 ② 三、滑动窗口 30. 长度最小的子数组 ② 给…

高效备考2025年AMC8竞赛:吃透2000-2024年600道真题(免费送题)

我们继续来随机看五道AMC8的真题和解析,根据实践经验,对于想了解或者加AMC8美国数学竞赛的考生来说,吃透AMC8历年真题是备考更加科学、有效的方法之一。 即使不参加AMC8竞赛,吃透了历年真题600道和背后的知识体系,那么…

Qt笔记 mainwindow

mainwindow是用来做应用界面的&#xff0c;有菜单栏&#xff0c;工具栏&#xff0c;浮动窗口,中心部件以及状态栏这几个部分组成。 举个例子&#xff1a; 1.菜单栏: #include <QMenuBar>QMenuBar *menubar new QMenuBar(this); setMenuBar(menubar);//设置到当前窗口 …

31-Java前端控制器模式(Front Controller Pattern)

Java前端控制器模式 实现范例 前端控制器模式&#xff08;Front Controller Pattern&#xff09;是用来提供一个集中的请求处理机制&#xff0c;所有的请求都将由一个单一的处理程序处理该处理程序可以做认证/授权/记录日志&#xff0c;或者跟踪请求&#xff0c;然后把请求传给…