Redis实战——优惠券秒杀:超卖问题一人一单问题

目录

  • 优惠券秒杀
    • Redis实现全局唯一ID
      • 业务场景
      • 代码实现:
    • 添加优惠券
      • 业务场景
      • 新增普通券
      • 新增秒杀券
      • 测试添加秒杀券
    • 实现秒杀下单
      • 业务分析
      • 流程代码编写
    • 超卖问题
      • 超买场景分析
      • 解决方案
      • 使用乐观锁
    • 一人一单
      • 业务场景
      • 解决步骤
    • 集群环境下的并发问题

优惠券秒杀

Redis实现全局唯一ID

业务场景

在各类购物App中,都会遇到商家发放的优惠券,当用户抢购商品时,生成的订单会保存到tb_voucher_order表中,而订单表如果使用数据库自增ID就会存在一些问题

  • id规律性太明显
  • 受单表数据量的限制
  • 如果我们的订单id有太明显的规律,那么对于用户或者竞争对手,就很容易猜测出我们的一些敏感信息,例如商城一天之内能卖出多少单,这明显不合适
  • 随着我们商城的规模越来越大,MySQL的单表容量不宜超过500W,数据量过大之后,我们就要进行拆库拆表,拆分表了之后,他们从逻辑上讲,是同一张表,所以他们的id不能重复,于是乎我们就要保证id的唯一性

那么这就引出我们的全局ID生成器了
全局ID生成器是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足一下特性

  1. 唯一性
  2. 高可用
  3. 高性能
  4. 递增性
  5. 安全性

为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其他信息

ID组成部分
符号位:1bit,永远为0
时间戳:31bit,以秒为单位,可以使用69年(2^31秒约等于69年)
序列号:32bit,秒内的计数器,支持每秒传输2^32个不同ID
那我们就根据我们分析的ID生成策略,来编写代码

代码实现:

  1. 生成起始时间
public static void main(String[] args) {
    //设置一下起始时间,时间戳就是起始时间与当前时间的秒数差
    LocalDateTime tmp = LocalDateTime.of(2022, 1, 1, 0, 0, 0);
    System.out.println(tmp.toEpochSecond(ZoneOffset.UTC));
    //结果为1640995200L
}
  1. 完整生成代码:
@Component
public class RedisIdWorker {
    @Autowired
    private StringRedisTemplate stringRedisTemplate;
    //设置起始时间,我这里设定的是2022.01.01 00:00:00
    public static final Long BEGIN_TIMESTAMP = 1640995200L;
    //序列号长度
    public static final Long COUNT_BIT = 32L;

    public long nextId(String keyPrefix){
        //1. 生成时间戳
        LocalDateTime now = LocalDateTime.now();
        long currentSecond = now.toEpochSecond(ZoneOffset.UTC);
        long timeStamp = currentSecond - BEGIN_TIMESTAMP;
        //2. 生成序列号
        String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
        long count = stringRedisTemplate.opsForValue().increment("inc:"+keyPrefix+":"+date);
        //3. 拼接并返回,简单位运算
        return timeStamp << COUNT_BIT | count;
    }
}

添加优惠券

业务场景

  • 每个店铺度可以发布优惠券,分为平价券和特价券,平价券可以任意购买,而特价券需要秒杀抢购
  • tb_voucher:优惠券的基本信息,优惠金额、使用规则等
  • tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息
  • 平价券由于优惠力度并不是很大,所以是可以任意领取
  • 而代金券由于优惠力度大,所以像第二种券,就得限制数量,从表结构上也能看出,特价券除了具有优惠券的基本信息以外,还具有库存,抢购时间,结束时间等等字段

sql设计如下:

DROP TABLE IF EXISTS `tb_voucher`;
CREATE TABLE `tb_voucher` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
  `shop_id` bigint(20) unsigned DEFAULT NULL COMMENT '商铺id',
  `title` varchar(255) NOT NULL COMMENT '代金券标题',
  `sub_title` varchar(255) DEFAULT NULL COMMENT '副标题',
  `rules` varchar(1024) DEFAULT NULL COMMENT '使用规则',
  `pay_value` bigint(10) unsigned NOT NULL COMMENT '支付金额,单位是分。例如200代表2元',
  `actual_value` bigint(10) NOT NULL COMMENT '抵扣金额,单位是分。例如200代表2元',
  `type` tinyint(1) unsigned NOT NULL DEFAULT '0' COMMENT '0,普通券;1,秒杀券',
  `status` tinyint(1) unsigned NOT NULL DEFAULT '1' COMMENT '1,上架; 2,下架; 3,过期',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8mb4 ROW_FORMAT=COMPACT;

-- ----------------------------
-- Table structure for tb_voucher_order
-- ----------------------------
DROP TABLE IF EXISTS `tb_voucher_order`;
CREATE TABLE `tb_voucher_order` (
  `id` bigint(20) NOT NULL COMMENT '主键',
  `user_id` bigint(20) unsigned NOT NULL COMMENT '下单的用户id',
  `voucher_id` bigint(20) unsigned NOT NULL COMMENT '购买的代金券id',
  `pay_type` tinyint(1) unsigned NOT NULL DEFAULT '1' COMMENT '支付方式 1:余额支付;2:支付宝;3:微信',
  `status` tinyint(1) unsigned NOT NULL DEFAULT '1' COMMENT '订单状态,1:未支付;2:已支付;3:已核销;4:已取消;5:退款中;6:已退款',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '下单时间',
  `pay_time` timestamp NULL DEFAULT NULL COMMENT '支付时间',
  `use_time` timestamp NULL DEFAULT NULL COMMENT '核销时间',
  `refund_time` timestamp NULL DEFAULT NULL COMMENT '退款时间',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 ROW_FORMAT=COMPACT;

新增普通券

新增普通券,也就只是将普通券的信息保存到表中

/**
 * 新增普通券
 * @param voucher 优惠券信息
 * @return 优惠券id
 */
@PostMapping
public Result addVoucher(@RequestBody Voucher voucher) {
    voucherService.save(voucher);
    return Result.ok(voucher.getId());
}

新增秒杀券

新增秒杀券主要看addSeckillVoucher中的业务逻辑

/**
 * 新增秒杀券
 * @param voucher 优惠券信息,包含秒杀信息
 * @return 优惠券id
 */
@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {
    voucherService.addSeckillVoucher(voucher);
    return Result.ok(voucher.getId());
}

addSeckillVoucher中的业务逻辑
秒杀券可以看做是一种特殊的普通券,将普通券信息保存到普通券表中,同时将秒杀券的数据保存到秒杀券表中,通过券的ID进行关联

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
    // 保存优惠券
    save(voucher);
    // 保存秒杀信息
    SeckillVoucher seckillVoucher = new SeckillVoucher();
    // 关联普通券id
    seckillVoucher.setVoucherId(voucher.getId());
    // 设置库存
    seckillVoucher.setStock(voucher.getStock());
    // 设置开始时间
    seckillVoucher.setBeginTime(voucher.getBeginTime());
    // 设置结束时间
    seckillVoucher.setEndTime(voucher.getEndTime());
    // 保存信息到秒杀券表中
    seckillVoucherService.save(seckillVoucher);
}

测试添加秒杀券

请求路径http://localhost:8081/voucher/seckill, 请求方式POST,JSON数据如下

{
    "shopId":1,
    "title":"100元代金券",
    "subTitle":"周一至周五可用",
    "rules":"全场通用\\n无需预约\\n可无限叠加",
    "payValue":8000,
    "actualValue":10000,
    "type":1,
    "stock":100,
    "beginTime":"2022-01-01T00:00:00",
    "endTime":"2022-10-31T23:59:59"
}

查询数据库可以看到添加记录

实现秒杀下单

业务分析

分析一下怎么抢优惠券

  1. 首先提交优惠券id,然后查询优惠券信息
  2. 之后判断秒杀时间是否开始
  3. 开始了,则判断是否有剩余库存
  4. 有库存,那么删减一个库存
  5. 然后创建订单
  6. 无库存,则返回一个错误信息
  7. 没开始,则返回一个错误信息

对应的流程图如下
20240313-091531-xc.png

流程代码编写

  1. VoucherOrderController
@RestController
@RequestMapping("/voucher-order")
public class VoucherOrderController {
    @Autowired
    private IVoucherOrderService voucherOrderService;
    @PostMapping("/seckill/{id}")
    public Result seckillVoucher(@PathVariable("id") Long voucherId) {
        return voucherOrderService.seckillVoucher(voucherId);
    }
}
  1. IVoucherOrderService
public interface IVoucherOrderService extends IService<VoucherOrder> {
    Result seckillVoucher(Long voucherId);
}
  1. seckillVoucher
@Autowired
private ISeckillVoucherService seckillVoucherService;

@Autowired
private RedisIdWorker redisIdWorker;
@Override
public Result seckillVoucher(Long voucherId) {
    LambdaQueryWrapper<SeckillVoucher> queryWrapper = new LambdaQueryWrapper<>();
    //1. 查询优惠券
    queryWrapper.eq(SeckillVoucher::getVoucherId, voucherId);
    SeckillVoucher seckillVoucher = seckillVoucherService.getOne(queryWrapper);
    //2. 判断秒杀时间是否开始
    if (LocalDateTime.now().isBefore(seckillVoucher.getBeginTime())) {
        return Result.fail("秒杀还未开始,请耐心等待");
    }
    //3. 判断秒杀时间是否结束
    if (LocalDateTime.now().isAfter(seckillVoucher.getEndTime())) {
        return Result.fail("秒杀已经结束!");
    }
    //4. 判断库存是否充足
    if (seckillVoucher.getStock() < 1) {
        return Result.fail("优惠券已被抢光了哦,下次记得手速快点");
    }
    //5. 扣减库存
    boolean success = seckillVoucherService.update()
        .setSql("stock = stock - 1")
        .eq("voucher_id",voucherId)
        .update();
    if (!success) {
        return Result.fail("库存不足");
    }
    //6. 创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    //6.1 设置订单id
    long orderId = redisIdWorker.nextId("order");
    //6.2 设置用户id
    Long id = UserHolder.getUser().getId();
    //6.3 设置代金券id
    voucherOrder.setVoucherId(voucherId);
    voucherOrder.setId(orderId);
    voucherOrder.setUserId(id);
    //7. 将订单数据保存到表中
    save(voucherOrder);
    //8. 返回订单id
    return Result.ok(orderId);
}

超卖问题

超买场景分析

我们之前的代码其实是有问题的,当遇到高并发场景时,会出现超卖现象,我们可以用Jmeter开200个线程来模拟抢优惠券的场景,URL为 localhost:8081/voucher-order/seckill/13,请求方式为POST

注意使用Jmeter进行压测时,需要携带我们登录的token
20240313-095739-Ch.png

测试完毕之后,查看数据库中的订单表,我们明明只设置了100张优惠券,却有166条数据,去优惠券表查看,库存为-66,超卖了66张
20240313-095808-rf.png

那么如何解决这个问题呢?先来看看我们的代码中是怎么写的

//4. 判断库存是否充足
if (seckillVoucher.getStock() < 1) {
    return Result.fail("优惠券已被抢光了哦,下次记得手速快点");
}
//5. 扣减库存
boolean success = seckillVoucherService.update().setSql("stock = stock - 1").eq("voucher_id", voucherId).update();
if (!success) {
    return Result.fail("库存不足");
}

假设现在只剩下一张优惠券,线程1过来查询库存,判断库存数大于1,但还没来得及去扣减库存,此时库线程2也过来查询库存,发现库存数也大于1,那么这两个线程都会进行扣减库存操作,最终相当于是多个线程都进行了扣减库存,那么此时就会出现超卖问题

解决方案

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案

  1. 悲观锁
    悲观锁认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行
  • 例如Synchronized、Lock等,都是悲观锁
  • 悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
  1. 乐观锁
    乐观锁认为线程安全问题不一定会发生,因此不加锁,只是在更新数据的时候再去判断有没有其他线程对数据进行了修改
  • 如果没有修改,则认为自己是安全的,自己才可以更新数据

  • 如果已经被其他线程修改,则说明发生了安全问题,此时可以重试或者异常

  • 乐观锁会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如CAS

  • 乐观锁的典型代表:就是CAS(Compare-And-Swap),利用CAS进行无锁化机制加锁,var5 是操作前读取的内存值,while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值

int var5;
do {
    var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;

其中do while是为了操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次

使用乐观锁

该项目中的具体解决方式:
这里并不需要真的来指定一下版本号,完全可以使用stock来充当版本号,在扣减库存时,比较查询到的优惠券库存和实际数据库中优惠券库存是否相同

@Override
public Result seckillVoucher(Long voucherId) {
    LambdaQueryWrapper<SeckillVoucher> queryWrapper = new LambdaQueryWrapper<>();
    //1. 查询优惠券
    queryWrapper.eq(SeckillVoucher::getVoucherId, voucherId);
    SeckillVoucher seckillVoucher = seckillVoucherService.getOne(queryWrapper);
    //2. 判断秒杀时间是否开始
    if (LocalDateTime.now().isBefore(seckillVoucher.getBeginTime())) {
        return Result.fail("秒杀还未开始,请耐心等待");
    }
    //3. 判断秒杀时间是否结束
    if (LocalDateTime.now().isAfter(seckillVoucher.getEndTime())) {
        return Result.fail("秒杀已经结束!");
    }
    //4. 判断库存是否充足
    if (seckillVoucher.getStock() < 1) {
        return Result.fail("优惠券已被抢光了哦,下次记得手速快点");
    }
    //5. 扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock = stock - 1")
            .eq("voucher_id", voucherId)
           .eq("stock",seckillVoucher.getStock())
            .update();
    if (!success) {
        return Result.fail("库存不足");
    }
    //6. 创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    //6.1 设置订单id
    long orderId = redisIdWorker.nextId("order");
    //6.2 设置用户id
    Long id = UserHolder.getUser().getId();
    //6.3 设置代金券id
    voucherOrder.setVoucherId(voucherId);
    voucherOrder.setId(orderId);
    voucherOrder.setUserId(id);
    //7. 将订单数据保存到表中
    save(voucherOrder);
    //8. 返回订单id
    return Result.ok(orderId);
}

以上逻辑的核心含义是:只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的,但是以上这种方式通过测试发现会有很多失败的情况,失败的原因在于:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败
20240313-100712-OA.png

那么我们继续完善代码,修改我们的逻辑,在这种场景,我们可以只判断是否有剩余优惠券,即只要数据库中的库存大于0,都能顺利完成扣减库存操作

@Override
public Result seckillVoucher(Long voucherId) {
    LambdaQueryWrapper<SeckillVoucher> queryWrapper = new LambdaQueryWrapper<>();
    //1. 查询优惠券
    queryWrapper.eq(SeckillVoucher::getVoucherId, voucherId);
    SeckillVoucher seckillVoucher = seckillVoucherService.getOne(queryWrapper);
    //2. 判断秒杀时间是否开始
    if (LocalDateTime.now().isBefore(seckillVoucher.getBeginTime())) {
        return Result.fail("秒杀还未开始,请耐心等待");
    }
    //3. 判断秒杀时间是否结束
    if (LocalDateTime.now().isAfter(seckillVoucher.getEndTime())) {
        return Result.fail("秒杀已经结束!");
    }
    //4. 判断库存是否充足
    if (seckillVoucher.getStock() < 1) {
        return Result.fail("优惠券已被抢光了哦,下次记得手速快点");
    }
    //5. 扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock = stock - 1")
            .eq("voucher_id", voucherId)
           .eq("stock",seckillVoucher.getStock())
           .gt("stock", 0)
            .update();
    if (!success) {
        return Result.fail("库存不足");
    }
    //6. 创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    //6.1 设置订单id
    long orderId = redisIdWorker.nextId("order");
    //6.2 设置用户id
    Long id = UserHolder.getUser().getId();
    //6.3 设置代金券id
    voucherOrder.setVoucherId(voucherId);
    voucherOrder.setId(orderId);
    voucherOrder.setUserId(id);
    //7. 将订单数据保存到表中
    save(voucherOrder);
    //8. 返回订单id
    return Result.ok(orderId);
}

重启服务器,继续使用Jmeter进行测试,这次就能顺利将优惠券刚好抢空了,没有发生超卖的问题。
20240313-101100-SX.png

但是这种乐观锁的方式并不完美,需要查询数据库判断是否超卖,需要继续优化,比如使用多库存等。

一人一单

业务场景

需求:修改秒杀业务,要求同一个优惠券,一个用户只能抢一张
具体操作逻辑如下:我们在判断库存是否充足之后,根据我们保存的订单数据,判断用户订单是否已存在
如果已存在,则不能下单,返回错误信息
如果不存在,则继续下单,获取优惠券
初步代码

    @Override
    public Result seckillVoucher(Long voucherId) {
        LambdaQueryWrapper<SeckillVoucher> queryWrapper = new LambdaQueryWrapper<>();
        //1. 查询优惠券
        queryWrapper.eq(SeckillVoucher::getVoucherId, voucherId);
        SeckillVoucher seckillVoucher = seckillVoucherService.getOne(queryWrapper);
        //2. 判断秒杀时间是否开始
        if (LocalDateTime.now().isBefore(seckillVoucher.getBeginTime())) {
            return Result.fail("秒杀还未开始,请耐心等待");
        }
        //3. 判断秒杀时间是否结束
        if (LocalDateTime.now().isAfter(seckillVoucher.getEndTime())) {
            return Result.fail("秒杀已经结束!");
        }
        //4. 判断库存是否充足
        if (seckillVoucher.getStock() < 1) {
            return Result.fail("优惠券已被抢光了哦,下次记得手速快点");
        }
       // 一人一单逻辑
       Long userId = UserHolder.getUser().getId();
       int count = query().eq("voucher_id", voucherId).eq("user_id", userId).count();
       if (count > 0){
           return Result.fail("你已经抢过优惠券了哦");
       }
        //5. 扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1")
                .eq("voucher_id", voucherId)
                .gt("stock", 0)
                .update();
        if (!success) {
            return Result.fail("库存不足");
        }
        //6. 创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        //6.1 设置订单id
        long orderId = redisIdWorker.nextId("order");
        //6.2 设置用户id
        Long id = UserHolder.getUser().getId();
        //6.3 设置代金券id
        voucherOrder.setVoucherId(voucherId);
        voucherOrder.setId(orderId);
        voucherOrder.setUserId(id);
        //7. 将订单数据保存到表中
        save(voucherOrder);
        //8. 返回订单id
        return Result.ok(orderId);
    }
  • 存在问题:还是和之前一样,如果这个用户故意开多线程抢优惠券,那么在判断库存充足之后,执行一人一单逻辑之前,在这个区间如果进来了多个线程,还是可以抢多张优惠券的,那我们这里使用悲观锁来解决这个问题

解决步骤

  • 初步代码,我们把一人一单逻辑之后的代码都提取到一个createVoucherOrder方法中,然后给这个方法加锁
  • 不管哪一个线程(例如线程A),运行到这个方法时,都要检查有没有其它线程B(或者C、 D等)正在用这个方法(或者该类的其他同步方法),有的话要等正在使用synchronized方法的线程B(或者C 、D)运行完这个方法后再运行此线程A,没有的话,锁定调用者,然后直接运行。
private synchronized Result createVoucherOrder(Long voucherId) {
    // 一人一单逻辑
    Long userId = UserHolder.getUser().getId();
    int count = query().eq("voucher_id", voucherId).eq("user_id", userId).count();
    if (count > 0) {
        return Result.fail("你已经抢过优惠券了哦");
    }
    //5. 扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock = stock - 1")
            .eq("voucher_id", voucherId)
            .gt("stock", 0)
            .update();
    if (!success) {
        return Result.fail("库存不足");
    }
    //6. 创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    //6.1 设置订单id
    long orderId = redisIdWorker.nextId("order");
    //6.2 设置用户id
    Long id = UserHolder.getUser().getId();
    //6.3 设置代金券id
    voucherOrder.setVoucherId(voucherId);
    voucherOrder.setId(orderId);
    voucherOrder.setUserId(id);
    //7. 将订单数据保存到表中
    save(voucherOrder);
    //8. 返回订单id
    return Result.ok(orderId);
}

但是这样加锁,锁的细粒度太粗了,在使用锁的过程中,控制锁粒度是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会被锁住,现在的情况就是所有用户都公用这一把锁,串行执行,效率很低,我们现在要完成的业务是一人一单,所以这个锁,应该只加在单个用户上,用户标识可以用userId

@Transactional
public Result createVoucherOrder(Long voucherId) {
    // 一人一单逻辑
    Long userId = UserHolder.getUser().getId();
    synchronized (userId.toString().intern()) {
        int count = query().eq("voucher_id", voucherId).eq("user_id", userId).count();
        if (count > 0) {
            return Result.fail("你已经抢过优惠券了哦");
        }
        //5. 扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1")
                .eq("voucher_id", voucherId)
                .gt("stock", 0)
                .update();
        if (!success) {
            return Result.fail("库存不足");
        }
        //6. 创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        //6.1 设置订单id
        long orderId = redisIdWorker.nextId("order");
        //6.2 设置用户id
        Long id = UserHolder.getUser().getId();
        //6.3 设置代金券id
        voucherOrder.setVoucherId(voucherId);
        voucherOrder.setId(orderId);
        voucherOrder.setUserId(id);
        //7. 将订单数据保存到表中
        save(voucherOrder);
        //8. 返回订单id
        return Result.ok(orderId);
    }
    //执行到这里,锁已经被释放了,但是可能当前事务还未提交,如果此时有线程进来,不能确保事务不出问题
}

由于toString的源码是new String,所以如果我们只用userId.toString()拿到的也不是同一个用户,需要使用intern(),如果字符串常量池中已经包含了一个等于这个string对象的字符串(由equals(object)方法确定),那么将返回池中的字符串。否则,将此String对象添加到池中,并返回对此String对象的引用。

public static String toString(long i) {
    if (i == Long.MIN_VALUE)
        return "-9223372036854775808";
    int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
    char[] buf = new char[size];
    getChars(i, size, buf);
    return new String(buf, true);
}

但是以上代码还是存在问题,问题的原因在于当前方法被Spring的事务控制,如果你在内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放了,这样也会导致问题,所以我们选择将当前方法整体包裹起来,确保事务不会出现问题

@Override
public Result seckillVoucher(Long voucherId) {
    LambdaQueryWrapper<SeckillVoucher> queryWrapper = new LambdaQueryWrapper<>();
    //1. 查询优惠券
    queryWrapper.eq(SeckillVoucher::getVoucherId, voucherId);
    SeckillVoucher seckillVoucher = seckillVoucherService.getOne(queryWrapper);
    //2. 判断秒杀时间是否开始
    if (LocalDateTime.now().isBefore(seckillVoucher.getBeginTime())) {
        return Result.fail("秒杀还未开始,请耐心等待");
    }
    //3. 判断秒杀时间是否结束
    if (LocalDateTime.now().isAfter(seckillVoucher.getEndTime())) {
        return Result.fail("秒杀已经结束!");
    }
    //4. 判断库存是否充足
    if (seckillVoucher.getStock() < 1) {
        return Result.fail("优惠券已被抢光了哦,下次记得手速快点");
    }
    Long userId = UserHolder.getUser().getId();
    synchronized (userId.toString().intern()) {
        return createVoucherOrder(voucherId);
    }
}

但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务,这里可以使用AopContext.currentProxy()来获取当前对象的代理对象,然后再用代理对象调用方法,记得要去IVoucherOrderService中创建createVoucherOrder方法

Long userId = UserHolder.getUser().getId();
synchronized (userId.toString().intern()) {
    IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
    return proxy.createVoucherOrder(voucherId);
}

该方法会用到一个依赖,我们需要导入一下

<dependency>
    <groupId>org.aspectj</groupId>
    <artifactId>aspectjweaver</artifactId>
</dependency>

同时在启动类上加上@EnableAspectJAutoProxy(exposeProxy = true)注解

@MapperScan("com.hmdp.mapper")
@SpringBootApplication
@EnableAspectJAutoProxy(exposeProxy = true)
public class HmDianPingApplication {
    public static void main(String[] args) {
        SpringApplication.run(HmDianPingApplication.class, args);
    }

}

重启服务器,再次使用Jmeter测试,200个线程并发,但是只能抢到一张优惠券,目的达成

集群环境下的并发问题

*通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了

  1. 我们将服务启动两份,端口分别为8081和8082
  2. 然后修改nginx的config目录下的nginx.conf文件,配置反向代理和负载均衡(默认轮询就行)

具体操作,我们使用POSTMAN发送两次请求,header携带同一用户的token,尝试用同一账号抢两张优惠券,发现是可行的。

失败原因分析:

由于我们部署了多个Tomcat,每个Tomcat都有一个属于自己的jvm,那么假设在服务器A的Tomcat内部,有两个线程,即线程1和线程2,这两个线程使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的。但是如果在Tomcat的内部,又有两个线程,但是他们的锁对象虽然写的和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2互斥

20240313-105839-Il.png

这就是集群环境下,syn锁失效的原因,在这种情况下,我们需要使用分布式锁来解决这个问题,让锁不存在于每个jvm的内部,而是让所有jvm公用外部的一把锁(Redis)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/465250.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AntV L7深圳智慧城市

本案例使用L7库和Mapbox GL JS构建深圳智慧城市。 文章目录 1. 引入 CDN 链接2. 引入组件3. 创建地图4. 创建场景5. 获取数据6. 创建面图层7. 演示效果8. 代码实现 1. 引入 CDN 链接 <!-- 1.引入CDN链接 --> <script src"https://unpkg.com/antv/l7"><…

Transformer的前世今生 day02(神经网络语言模型

神经网络语言模型 使用神经网络的方法&#xff0c;去完成语言模型的两个问题&#xff0c;下图为两层感知机的神经网络语言模型&#xff1a; 以下为预备概念 感知机 线性模型可以用下图来表示&#xff1a;输入经过线性层得到输出 线性层 / 全连接层 / 稠密层&#xff1a;假…

odoo17开发教程(8):设置界面UI的字段属性

目录 添加字段 给字段设置只读和不可拷贝 给字段添加默认值 保留字段 本节目标&#xff1a;在本文末尾&#xff0c;售价(selling price)应为只读值&#xff0c;卧室数量(bedrooms)和可用日期(availability date)应为默认值。此外&#xff0c;在复制记录时&#xff0c;售价和…

Langchain-chatchat+ChatGlm3-6b部署

我的环境 台式机 内存&#xff1a;16GB 显卡&#xff1a;GTX1060-6G 1. 基础环境准备 1.1. 安装anaconda&#xff0c;创建环境python版本3.11 conda create -n chatglm3 python3.11 conda activate chatglm3 1.2. 搭建cuda环境 # 查看cuda版本&#xff0c;版本是CUDA V…

cmd常用指令

cmd全称Command Prompt&#xff0c;中文译为命令提示符。 命令提示符是在操作系统中&#xff0c;提示进行命令输入的一种工作提示符。 在不同的操作系统环境下&#xff0c;命令提示符各不相同。 在windows环境下&#xff0c;命令行程序为cmd.exe&#xff0c;是一个32位的命令…

sqlite 常见命令 表结构

在 SQLite 中&#xff0c;将表结构保存为 SQL 具有一定的便捷性和重要性&#xff0c;原因如下 便捷性&#xff1a; 备份和恢复&#xff1a;将表结构保存为 SQL 可以方便地进行备份。如果需要还原或迁移数据库&#xff0c;只需执行保存的 SQL 脚本&#xff0c;就可以重新创建表…

Mybatis-xml映射文件与动态SQL

xml映射文件 动态SQL <where><if test"name!null">name like concat(%,#{name},%)</if><if test"username!null">and username#{username}</if></where> <!-- collection&#xff1a;遍历的集合--> <!-- …

问题解决:关于tomcat无法连接问题的解决

安装tomcat并配置环境变量 下载tomcat并安装 首先去tomcat官方网站,下载tomcat 进入tomcat官方网站之后&#xff0c;查看jdk应该对应的tomcat版本&#xff0c;点击图示的按钮 点击完毕之后&#xff0c;可以看到下述的页面 图中的表格可以看到对应的jdk版本与tomcat的版本之…

基于sortablejs实现拖拽element-ui el-table表格行进行排序

可以用原生的dragstart、drag、dragend、dragover、drop、dragleave实现这个效果&#xff0c;但是有现成的轮子就不要重复造了&#xff0c;看效果&#xff1a; <template><el-table :class"$options.name" :data"tableData" ref"table"…

【数据结构入门】顺序表详解(增删查改)

目录 顺序表的基本概念 动态顺序表的实现 初始化 插入 尾插法 头插法 指定位置之前插入 删除 尾删法 头删法 指定位置删除 查找 销毁 顺序表的基本概念 什么是顺序表&#xff1f; 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构&#xff0c;一般…

树与二叉树(数据结构)

本篇博客讲解 树与二叉树&#xff0c;后续会继续讲解堆 —————————————————————— 1.树概念及结构 1.1树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看…

浅谈C++的函数重载

今天我们来谈谈C的函数重载&#x1f60a;&#x1f60a;&#x1f60a;&#xff0c;对于函数重载&#xff0c;我们首先需要理解几个问题&#xff1a; 1、什么是函数重载 &#xff1f;2、函数重载需要注意什么 &#xff1f;3、为什么C语言不支持函数重载&#xff0c;而C支持 &…

Unity在UGUI上通过绘制网格顶点自由画线

该插件的实现是使用UI组件的绘图API来动态生成和修改几何形状&#xff0c;可自由动态更改画线的粗细、拐角圆滑度、颜色&#xff0c;自由增减节点&#xff0c;不额外增加gameobject&#xff0c;并且在原生的UGUI上以ScreenSpace-Overlay的状态下&#xff0c;显示效果如下所示 …

【PyTorch】基础学习:一文详细介绍 load_state_dict() 的用法和应用

【PyTorch】基础学习&#xff1a;一文详细介绍 load_state_dict() 的用法和应用 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#…

【AI】Ubuntu系统深度学习框架的神经网络图绘制

一、Graphviz 在Ubuntu上安装Graphviz&#xff0c;可以使用命令行工具apt进行安装。 安装Graphviz的步骤相对简单。打开终端&#xff0c;输入以下命令更新软件包列表&#xff1a;sudo apt update。之后&#xff0c;使用命令sudo apt install graphviz来安装Graphviz软件包。为…

使用 GitHub Actions 通过 CI/CD 简化 Flutter 应用程序开发

在快节奏的移动应用程序开发世界中&#xff0c;速度、可靠性和效率是决定项目成功或失败的关键因素。持续集成和持续部署 (CI/CD) 实践已成为确保满足这些方面的强大工具。当与流行的跨平台框架 Flutter 和 GitHub Actions 的自动化功能相结合时&#xff0c;开发人员可以创建无…

网络安全实训Day5

写在前面 昨天忘更新了......讲的内容不多&#xff0c;就一个NAT。 之前记的NAT的内容&#xff1a;blog.csdn.net/Yisitelz/article/details/131840119 网络安全实训-网络工程 NAT 公网地址与私网地址 公网地址 可以在互联网上被寻址&#xff0c;由运营商统一分配全球唯一的I…

GAN及其衍生网络中生成器和判别器常见的十大激活函数(2024最新整理)

目录 1. Sigmoid 激活函数 2. Tanh 激活函数 3. ReLU 激活函数 4. LeakyReLU 激活函数 5. ELU 激活函数 6. SELU 激活函数 7. GELU 激活函数 8. SoftPlus 激活函数 9. Swish 激活函数 10. Mish 激活函数 激活函数(activation function)的作用是对网络提取到的特征信…

字母异位词分组【每日一题】

可以通过案例找到规律&#xff0c;每个词排序完后是同一个&#xff0c;所以通过hasmap存储排序过的值做key&#xff0c;值是存储单词集合。 package HasTable;import java.util.*;class Solution {static List<List<String>> groupAnagrams(String[] strs) {Map&l…

(官网安装) 基于CentOS 7安装MangoDB和MangoDB Shell

前言 查了很多资料都不靠谱&#xff0c;在安装过程中遇到很多的坑&#xff0c;mangoDB 服务重视起不来&#xff1b;出现了很多难以解决的报错&#xff0c;现在把安装过程中遇到的问题&#xff0c;和如何闭坑说一下&#xff0c;很多时候都是准备工作不足导致的&#xff1b;很多方…