Text-to-SQL 工具Vanna + MySQL本地部署 | 数据库对话机器人

今天我们来重点研究与实测一个开源的Text2SQL优化框架 – Vanna
在这里插入图片描述

1. Vanna 简介【Text-to-SQL 工具】

Vanna 是一个基于 MIT 许可的开源 Python RAG(检索增强生成)框架,用于 SQL 生成和相关功能。它允许用户在数据上训练一个 RAG “模型”,然后提问问题,这将生成在数据库上运行的 SQL 查询语句,并将查询结果通过表格和图表的方式展示给用户。

简单的说,Vanna是一个开源的、基于Python的、用于SQL自动生成与相关功能的RAG(检索增强生成)框架。

基本特点:

  • 官网:https://vanna.ai/
  • 开放源代码:https://github.com/vanna-ai/vanna
  • 基于Python语言。可通过PyPi包vanna在自己项目中直接使用
  • RAG框架。RAG最典型的应用是 私有知识库问答,通过Prompt注入私有知识以提高LLM回答的准确性。但RAG本身是一种Prompt增强方案,完全可以用于其他LLM应用场景。

2. Vanna工作原理

借助LLM实现一个最简单的、基于Text2SQL的数据库对话机器人本身原理是比较简单的:
在这里插入图片描述
Vanna则是借助了相对简单也更易理解的RAG方法,通过检索增强来构建Prompt,以提高SQL生成的准确率:
在这里插入图片描述
从这张图可以了解到,Vanna的关键原理为:

借助数据库的DDL语句、元数据(数据库内关于自身数据的描述信息)、相关文档说明、参考样例SQL等训练一个RAG的“模型”(embedding+向量库);
并在收到用户自然语言描述的问题时,从RAG模型中通过语义检索出相关的内容,进而组装进入Prompt,然后交给LLM生成SQL。

3. 使用步骤

第一步:在你的数据上训练一个RAG“模型”

把DDL/Schemas描述、文档、参考SQL等交给Vanna训练一个用于RAG检索的“模型”(向量库)。
在这里插入图片描述
本文尝试了1、3、4的方法,记住这几种方法,下面会用到。

第二步:提出“问题”,获得回答

RAG模型训练完成后,可以用自然语言直接提问。Vanna会利用RAG与LLM生成SQL,并自动运行后返回结果。

4. vanna的扩展与定制化

从上述的vanna原理介绍可以知道,其相关的三个主要基础设施为:

  • Database,即需要进行查询的关系型数据库
  • VectorDB,即需要存放RAG“模型”的向量库
  • LLM,即需要使用的大语言模型,用来执行Text2SQL任务

在这里插入图片描述
Vanna的设计具备了很好的扩展性与个性化能力,能够支持任意数据库、向量数据库与大模型。

4.1 自定义LLM与向量库

默认情况下,Vanna支持使用其在线LLM服务(对接OpenAI)与向量库,可以无需对这两个进行任何设置,即可使用。因此使用Vanna最简单的原型只需要五行代码:

import vanna
from vanna.remote import VannaDefault
vn = VannaDefault(model='model_name', api_key='api_key')
vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')
vn.ask("What are the top 10 albums by sales?")

注意:使用Vanna.AI的在线LLM与向量库服务,需要首先到 https://vanna.ai/ 去申请账号,具体请参考下一部分实测。

如果需要使用自己本地的LLM或者向量库,比如使用自己的OpenAI账号与ChromaDB向量库,则可以扩展出自己的Vanna对象,并传入个性化配置即可。

from vanna.openai.openai_chat import OpenAI_Chat
from vanna.chromadb.chromadb_vector import ChromaDB_VectorStore

class MyVanna(ChromaDB_VectorStore, OpenAI_Chat):
    def __init__(self, config=None):
        ChromaDB_VectorStore.__init__(self, config=config)
        OpenAI_Chat.__init__(self, config=config)

vn = MyVanna(config={'api_key': 'sk-...', 'model': 'gpt-4-...'})

这里的OpenAI_Chat和ChromaDB_VectorStore是Vanna已经内置支持的LLM和VectorDB。
如果你需要支持 没有内置支持的LLM和vectorDB
则需要首先 扩展出自己的LLM类与VectorDB类
实现必要的方法(具体可参考官方文档),
然后再 扩展出自己的Vanna对象
在这里插入图片描述

4.2 自定义关系型数据库

Vanna默认支持Postgres,SQL Server,Duck DB,SQLite等关系型数据库,可直接对这一类数据库进行自动访问,实现数据对话机器人。
但如果需要连接自己企业的其他数据库,比如企业内部的Mysql或者Oracle,自需要定义一个个性化的run_sql方法,并返回一个Pandas Dataframe即可。具体可参考下方的实测代码。

5. 实测:数据库对话机器人

这里我们使用Vanna快速构建一个与数据库对话的AI智能体,直观的感受Vanna的工作过程与效果。

【0 - 选择基础环境】

  • LLM(大模型)
    选择Vanna.AI在线提供的OpenAI服务,真实环境中建议使用自己的LLM。
  • VectorDB(向量数据库)
    选择Vanna.AI在线提供的VectorDB服务,真实环境中可根据条件灵活选择。
  • RDBMS(关系型数据库)
    我们选择本地测试环境中的一个MySQL数据库,其中存放了一些测试的社区用户信息数据customer
    在这里插入图片描述

我用DBeaver工具来管理MySQL数据库,创建数据可以用SQL语句CREATE导入csv
导入csv可以参考【数据库】DBeaver链接MariaDB建表,导入csv数据这篇博客

【1 - 申请Vanna账号】

由于我们使用了Vanna.AI的在线LLM与vectorDB服务。因此首先在Vanna.AI申请一个账号,并获得API-key(红框中部分 / 代码中隐藏部分):
在这里插入图片描述
设置一个Model name,用于在线的RAG model:
我的设置为:community
在这里插入图片描述
注意:与新数据库对话,需要重新设置一个Model name

【2 - 构建Vanna对象】

pip install vanna

使用pip安装vanna库后,首先使用如下代码创建默认的Vanna对象:

import vanna
from vanna.remote import VannaDefault
api_key = '上面获得的API-key'
vanna_model_name = '上面设置的model-name( 我的是community )'
vn = VannaDefault(model=vanna_model_name, api_key=api_key)

由于我们需要使用自己的本地Mysql数据库,需要定义一个run_sql方法
设置好MySQL数据库的user 、password、host 和 database

(这个database名称是DBeaver工具customer上方的数据库名称Community,RAG model的名称是网页上设置的 community,首字母是小写的,各位别抄错啦!按自己的配置来哈!)

import pandas as pd
import mysql.connector

def run_sql(sql: str) -> pd.DataFrame:
    cnx = mysql.connector.connect(user='root',password='111000',host='localhost',database='Community')
    cursor = cnx.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    columns = cursor.column_names
    df = pd.DataFrame(result, columns=columns)
    return df

将自定义的方法设置到上面创建的Vanna对象

vn.run_sql = run_sql
vn.run_sql_is_set = True

【3 - 训练RAG Model】

这里我们先采用Vanna提供的一种更简单的方式:通过数据库的元数据信息构建训练计划(plan),然后交给Vanna生成RAG model:

df_information_schema = vn.run_sql("SELECT * FROM INFORMATION_SCHEMA.COLUMNS where table_schema = 'chatdata'")
plan = vn.get_training_plan_generic(df_information_schema)
vn.train(plan=plan)

我构建计划(plan)的方式失败!
故通过 DDL语句SQL问答对 的方式来构建。

表和列名的注释很重要!
表和列名的注释很重要!
表和列名的注释很重要!
有助于vn识别语义,有的列名英文不是那么明确,可能会导致vn生成SQL出错。

比如身份证号的英文可以是id_number,我这里是id_card
比如性别的英文可以是sex,我这里是gender

当时我的表还没添加注释,所以多加了CREATE TABLE的操作,如果各位同学在创建表时,已添加了注释,下面这句CREATE TABLE就可以省略了。

需要注意的是,下面的训练代码只需要执行一次即可

vn.train(ddl="""
CREATE TABLE IF NOT EXISTS customer (
    name INT PRIMARY KEY COMMENT '姓名', 
    gender INT COMMENT '性别(男性=1/女性=2)', 
    id_card VARCHAR(100) COMMENT '身份证',
    mobile VARCHAR(100) COMMENT '手机', 
    nation VARCHAR(10) COMMENT '民族', 
    residential_city VARCHAR(100) COMMENT '居住城市',
) COMMENT='customer' CHARACTER SET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
""")

vn.train(question='年龄最大的是哪个?',sql='SELECT name FROM customer ORDER BY age DESC LIMIT 1')

可能直接给个问答对即可。引导vn去customer表中查询。
不行的话这两句vn.train都加上。

【4 - 测试:与数据库对话】

以上的准备工作完成后,就可以与你的关系型数据库对话了:

vn.ask('统计不同民族数量?')

控制台可以看到输出的结果,包含了SQL和执行结果:
在这里插入图片描述
并且会弹出一个网页,显示执行的结果
在这里插入图片描述
【5 - 前端Web APP测试】
Vanna提供了一个内置的基于Flask框架的Web APP,可以直接运行后,通过更直观的界面与你的数据库对话,并且具有图表可视化的效果,还内置了简单的RAG Model数据的管理功能。通过这种方式启动web App:

from vanna.flask import VannaFlaskApp
app = VannaFlaskApp(vn)
app.run()

通过默认的端口访问http://localhost:8084,即可与你的数据库对话,界面如下:
在这里插入图片描述
在这里插入图片描述
以上,我们深入了解了Vanna这样一个基于Python与RAG的Text2SQL交互式数据分析框架。借助这样的框架,我们无需太多关心Prompt的构建、组装与优化,就可以快速实现一个基于Text2SQL方案的交互式数据库对话机器人,且具备更高的正确率。

此外,Vanna也提供了一些有用的关联功能:

  • RAG model数据的查询与管理API
  • 基于Plotly的结果可视化API
  • 前端Web APP的简单参考实现

在实际测试中,我们也发现Vanna仍然存在一些问题,

  • 大部分问题和我们交给Vanna训练RAG model的信息不足
  • 倾向于一次性生成,不便基于上一句SQL进行调优[增、删、改]

根据Vanna.ai官方的未来愿景规划,Vanna旨在成为未来创建AI数据分析师的首选工具。并在准确性(Text2SQL的最大挑战)、交互能力(能够实现交互协作,比如要人类做进一步澄清、解释答案、甚至提出后续问题),与自主性(主动访问必要的系统和数据甚至触发工作流程等)三个方面更加接近人类数据分析师,我们希望Vanna未来能够展示更强大的能力。

6. 训练技巧

利用好 SQL问答对

  • 没添加SQL问答对之前
    问:居住在重庆市的人有哪些?
    答:SQL语句不够准确

    SELECT name 
    FROM customer 
    WHERE residential_city = '重庆'; 
    

    在这里插入图片描述

  • 添加SQL问答对之后
    问:居住在重庆市的人有哪些?
    答:SQL语句可以模糊匹配,可以得到准确的查询结果

    SELECT name 
    FROM customer 
    WHERE residential_city LIKE '%重庆%'; 
    

    在这里插入图片描述

代码自取

import vanna
from vanna.remote import VannaDefault
from vanna.flask import VannaFlaskApp
import pandas as pd
import mysql.connector

api_key = '7acxxx68c'
vanna_model_name = 'community'
vn = VannaDefault(model=vanna_model_name, api_key=api_key)

def run_sql(sql: str) -> pd.DataFrame:
    cnx = mysql.connector.connect(user='root',password='111000',host='localhost',database='Community')
    cursor = cnx.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    columns = cursor.column_names
    # print('columns:',columns)
    df = pd.DataFrame(result, columns=columns)
    return df

# 将函数设置到vn.run_sql中
vn.run_sql = run_sql
vn.run_sql_is_set = True

# vn.train(ddl="""
# CREATE TABLE IF NOT EXISTS customer (
#     name INT PRIMARY KEY COMMENT '姓名', 
#     gender INT COMMENT '性别(男性=1/女性=2)', 
#     id_card VARCHAR(100) COMMENT '身份证',
#     mobile VARCHAR(100) COMMENT '手机', 
#     nation VARCHAR(10) COMMENT '民族', 
#     residential_city VARCHAR(100) COMMENT '居住城市',
# ) COMMENT='customer' CHARACTER SET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
# """)

vn.train(question='年龄最大的是哪个?',sql='SELECT name FROM customer ORDER BY age DESC LIMIT 1')
vn.train(question='居住在重庆的人有哪些?',sql="SELECT name FROM customer WHERE residential_city LIKE '%重庆%'")


first_conversation_sql = vn.ask('居住在重庆的人有哪些?')
print(type(first_conversation_sql))

app = VannaFlaskApp(vn)
app.run()

【参考链接】
手把手教你本地部署开源 Text-to-SQL 工具:Vanna
Vanna:10分钟快速构建基于大模型与RAG的SQL数据库对话机器人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/463303.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端React篇之React的生命周期有哪些?

目录 React的生命周期有哪些?挂载阶段(Mounting)更新阶段(Updating)卸载阶段(Unmounting)错误处理阶段(Error Handling) React常见的生命周期React主要生命周期 React的生…

(附数据集)基于lora参数微调Qwen1.8chat模型的实战教程

基于lora微调Qwen1.8chat的实战教程 日期:2024-3-16作者:小知运行环境:jupyterLab描述:基于lora参数微调Qwen1.8chat模型。 样例数据集 - qwen_chat.json(小份数据) - chat.json(中份数据&…

怎么判断发票扫描OCR软件好用不好用?

发票扫描OCR(Optical Character Recognition)是一种将纸质发票上的文字、数字等信息转化为可编辑的文本格式的技术。在现代企业中,随着数字化转型的推进,发票扫描OCR技术变得越来越重要。然而,面对市场上众多的发票扫描…

如何通过人才测评系统来寻找个人的潜能

潜力这个词,有的时候真是虚无缥缈,人们总说人的潜力是无限,又总说人的潜力是有限的,想一想两句话也都有道理,人的潜能怎么可能无限大?但在某些时候,你也许可以做的更好,但是对于这个…

C#,动态规划问题中基于单词搜索树(Trie Tree)的单词断句分词( Word Breaker)算法与源代码

1 分词 分词是自然语言处理的基础,分词准确度直接决定了后面的词性标注、句法分析、词向量以及文本分析的质量。英文语句使用空格将单词进行分隔,除了某些特定词,如how many,New York等外,大部分情况下不需要考虑分词问题。但有些情况下,没有空格,则需要好的分词算法。…

【ESP32接入国产大模型之MiniMax】

1. MiniMax 讲解视频: ESP32接入语言大模型之MiniMax MM智能助理是一款由MiniMax自研的,没有调用其他产品的接口的大型语言模型。MiniMax是一家中国科技公司,一直致力于进行大模型相关的研究。 随着人工智能技术的不断发展,自然语…

前端Vue与uni-app中的九宫格、十二宫格和十五宫格菜单组件实现

在前端 Vue 开发中,我们经常会遇到需要开发九宫格、十二宫格和十五宫格菜单按钮的需求。这些菜单按钮通常用于展示不同的内容或功能,提供给用户快速访问和选择。 一、引言 在前端开发中,九宫格、十二宫格和十五宫格菜单按钮是一种常见的布局…

【Canvas与艺术】下雪籽特效

【要点】 控制一个点的x,y坐标及下落速度&#xff0c;就能画出一个雪籽&#xff1b;创建n个雪籽&#xff0c;下雪籽的模拟效果就有了。 【效果图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content…

VMwareWorkstation16与Ubuntu 22.04.6 LTS下载与安装

一、准备工作 VMware Workstation Pro 16官网下载&#xff1a; https://customerconnect.vmware.com/cn/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/16_0。下载需要账号登录。 二、安装 双击exe文件稍等一会会弹出安装程序&#xff0c;如图 这…

LAMP架构部署--yum安装方式

这里写目录标题 LAMP架构部署web服务器工作流程web工作流程 yum安装方式安装软件包配置apache启用代理模块 配置虚拟主机配置php验证 LAMP架构部署 web服务器工作流程 web服务器的资源分为两种&#xff0c;静态资源和动态资源 静态资源就是指静态内容&#xff0c;客户端从服…

Javaweb day17 day18 day19

mysql-DDL 数据库操作 写法 客户端工具 &#xff08;也可以使用idea&#xff09; 表 写法 约束 数据类型 案例 写法 表的查询修改删除 写法 删除

如何在 Linux ubuntu 系统上搭建 Java web 程序的运行环境

如何在 Linux ubuntu 系统上搭建 Java web 程序的运行环境 基于包管理器进行安装 Linux 会把一些软件包放到对应的服务器上&#xff0c;通过包管理器这样的程序&#xff0c;来把这些软件包给下载安装 ubuntu系统上的包管理器是 apt centos系统上的包管理器 yum 注&#xff1a;…

武汉灰京文化:直播游戏新时代的游戏宣传方式

随着互联网和科技的迅速发展&#xff0c;游戏产业也日益繁荣。传统的游戏宣传方式逐渐显现出一些不足&#xff0c;传统的广告渠道和媒体报道在一定程度上已经不能满足游戏行业的需求。然而&#xff0c;随着直播平台的兴起&#xff0c;直播游戏成为了一种新的游戏宣传方式&#…

2.3 HTML5新增的常用标签

2.3.1 HTML5新增文档结构标签 在HTML5版本之前通常直接使用<div>标签进行网页整体布局&#xff0c;常见布局包括页眉、页脚、导航菜单和正文部分。为了区分文档结构中不同的<div>内容&#xff0c;一般会为其配上不同的id名称。例如&#xff1a; <div id"h…

论文阅读——GeoChat(cvpr2024)

GeoChat : Grounded Large Vision-Language Model for Remote Sensing 一、引言 GeoChat&#xff0c;将多模态指令调整扩展到遥感领域以训练多任务会话助理。 遥感领域缺乏多模式指令调整对话数据集。受到最近指令调优工作的启发&#xff0c;GeoChat 使用 Vicuna-v1.5和自动化…

基于Matlab的车牌识别算法,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

C语言的位操作与位字段

C语言中的位操作允许程序员直接在整型变量的单个位或位组上进行操作。这种操作在许多低级编程任务中非常有用&#xff0c;尤其是在嵌入式系统编程中&#xff0c;如硬件操作、设备驱动及性能优化等场景。位操作主要使用以下几种位操作符&#xff1a; & &#xff08;按位与&a…

Rabbit MQ详解

写在前面,由于Rabbit MQ涉及的内容较多&#xff0c;赶在春招我个人先按照我认为重要的内容进行一定总结&#xff0c;也算是个学习笔记吧。主要参考官方文档、其他优秀文章、大模型问答。自己边学习边总结。后面有时间我会慢慢把所有内容补全&#xff0c;分享出来也是希望可以给…

软考高级:软件工程螺旋模型概念和例题

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

小清新卡通人物404错误页面模板源码

小清新卡通人物404错误页面模板源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面 下载地址 小清新卡通人物404错误页面模板源码