论文阅读——GeoChat(cvpr2024)

GeoChat : Grounded Large Vision-Language Model for Remote Sensing

一、引言

 GeoChat,将多模态指令调整扩展到遥感领域以训练多任务会话助理。

遥感领域缺乏多模式指令调整对话数据集。受到最近指令调优工作的启发,GeoChat 使用 Vicuna-v1.5和自动化管道来生成包含近 318k 指令的各种遥感多模式指令跟踪数据。

我们从为不同任务开发的各种现有遥感数据集创建图像文本对。其中包括用于 VQA 的 LRBEN、用于场景分类的 NWPU-RESISC-45 和用于对象检测的 SAMRS。

 GeoChat 的一项关键功能是在单个pipline中统一 RS 图像的多个图像和区域级推理任务:

GeoChat可以在一个统一的框架中完成遥感(RS)图像理解的多个任务。给定合适的任务标记和用户查询,该模型可以生成基于视觉的响应(带有相应对象位置的文本-如上图所示)、图像和区域的视觉问答(分别为左上角和右下角)以及场景分类(右上角)和正常自然语言对话(下图)。这使其成为第一个具有接地能力的RS VLM。

贡献:

1、RS 多模态指令遵循数据集。我们提出了一种新颖的数据生成pipline,利用现有的对象检测数据集创建图像的简短描述,然后使用 Vicuna-v1.5和仅使用生成的文本创建对话。此外,我们使用相应的数据集添加视觉问答和场景分类能力。总共有 318k 个指令对的RS数据集。

2、GeoChat。利用我们的数据集,我们微调 LLaVA1.5 以创建遥感领域视觉语言模型 - GeoChat。我们的 LoRA 微调非常高效,并且避免忘记嵌入在完全调整的 LLaVA 模型中的必要上下文,该模型的 MLP 投影经过训练,可将图像对齐到 LLM 的词嵌入空间 。这使得 GeoChat 能够保留 LLaVA 的对话和指令跟踪能力,并将其领域知识扩展到遥感任务。

3、我们还解决了缺乏评估基准来评估现有 VLM 在遥感对话方面的能力的问题。为此,我们为 RS 中的对话建立了评估协议,并设置了一套任务,以便与未来在这个方向上的努力进行比较。我们展示了针对不同遥感任务的各种监督评估和零样本评估,包括图像字幕、视觉问答和场景分类,以证明 GeoChat 会话 VLM 的通用性。

二、GeoChat

GeoChat可能完成的任务

a)图像级对话任务。在此任务中,GeoChat处理图像x,和用户文本查询q,其输入或输出中没有任何特定的空间坐标。目标是在图像范围内的整体水平上执行基于对话的任务,如视觉问答(VQA)、场景分类和图像描述。

B)区域级对话任务。此任务在GeoChat的输入中提供x和q之外的空间框位置b。区域位置b将模型的注意力引导到图像内的特定区域,使得模型可以执行诸如区域级字幕、区域特定VQA或多轮对话之类的任务。

c)固定的谈话任务。通过使用称为task-specification的特殊token t,可以引导GeoChat以不同的粒度提供对象位置,同时保持会话能力。它可以帮助执行任务,包括接地图像描述/对话,object grounding and referring expression detection.

GeoChat Architecture

GeoChat遵循LLaVA-v1.5 的架构,由三个核心组件组成,

i)全局图像编码器

ii)MLP适配器(两个线性层)

iii)LLM。

与LLaVA不同,GeoChat 添加了特定的任务提示,指示模型所需的任务类型,即,grounding, image-level or region-level conversations.。此外,我们允许输入和输出中的空间位置,we allow spatial positions within both inputs and outputs, enabling visual prompts as inputs and grounded objects in GeoChat outputs.。值得注意的是,原始LLaVA模型不能执行object grounding或接受区域输入。此外,原始的LLaVA不能推理遥感图像。

任务Token:GeoChat 能够在不同类型的遥感视觉解译任务之间轻松切换,为了消除任务之间的不确定性,为每个任务分配一个唯一的任务标识, ,分别代表grounded conversations, region captioning and referring expression comprehension。对于视觉问答和场景分类的情况,我们直接要求模型以单个单词或短语输出答案。

空间位置表示: ,角度θ表示边框旋转角度。x和y坐标在区间[0100]内归一化。

视觉骨干网络:CLIP-ViT(L-14),这个模型原始输入336×336,不适合遥感图像,不足以理解遥感图像中呈现的细节(例如,小物体和物体细节),所以对这个模型的位置编码插值,使输入图片大小为504×504。

MLP Cross-modal Adaptor:使用MLP(输入1024,输出4096)把CLIP-ViT输出的向量映射到语言模型空间。激活函数GeLU。

Large Language Model:Vicunav1.5(7B)作为GeoChat的基础模型。显式地与语言模型交互,构建边界框的文本表示,以表达其空间坐标,用于需要产生空间位置的视觉基础任务。类似地,LLM的安全、一致和有效行为是通过与给定输入一起附加的系统提示来确保的。基于低秩自适应(LoRA)的策略用于对LLM进行微调。

训练细节:

我们使用预训练的CLIP-ViT(L-14)编码器、预训练的MLP适配器和Vicuna-v1.5来初始化我们的模型,该编码器在大量文本和视觉数据上进行训练,该适配器在带有BLIP字幕的LAION-CC-SBU数据集的558K子集上进行预训练。为了使我们的模型适应遥感图像,我们随后对LLM进行了LoRA微调,同时在训练过程中保持MLP适配器和CLIP编码器冻结。

三、RS Multimodal Instruction Dataset

我们专门提供系统指令作为提示,要求Vicuna以一种好像可以看见图像的方式生成多轮问答对(尽管它只能访问文本)。这是通过提供在提示中手动编写的少量上下文示例来实现的,以向Vicuna展示如何基于所提供的标题和信息构建高质量的指令-响应对。我们随机抽取65k张图像来创建多轮对话,10k张图像来生成复杂的问题答案,30k张图像用于生成给定简短描述的详细描述。

组成数据集:集合了三个不同类型的数据集:object detection, scene classification, and visual question answering (VQA)。三个对象检测(DOTA、DIOR和FAIR1M,它们共同形成了SAMRS数据集)、一个场景分类(NWPURESISC-45)、一种VQA(LRBEN)和一种洪水检测VQA数据集。

尽管对象检测数据库中包括各种各样的对象类,但缺少一些基本类别,如建筑物、道路和树木,所以先在LoveDA数据集上预先训练的ViTAE RVSA模型,该模型包括所需的重要类。该模型用于在SAMRS数据集上推断这些类,从而产生伪标签。

属性提取:对于referring expression标注,RS图像中的各种属性是很重要的。选择了五种不同类型的属性,如表3所示。对象类别信息可以直接从SAMRS数据集中获得。对于颜色提取,我们使用K-Means聚类算法。具体来说,我们使用GT框从图像中提取对象的像素,并将其聚类为K组。然后选择最大簇的中心作为对象的颜色。为了指定对象的相对大小,我们将对象分为三种大小:小、正常和大。这种分类是通过测量整个数据集中类的所有实例的面积并将第80个百分位数指定为大标签来确定的。同样,第20个百分位被指定为小尺寸,其余的属于正常类别。为了确定对象在图像中的相对位置,我们将整个图像划分为3×3网格,定义区域,如右上、上、左上、左、中、右、右下、左下和下。根据对象的中心像素坐标,我们相应地指定其相对位置。

为了定义给定图像中对象之间的关系,我们根据边界框之间的距离对不同的对象进行分组,对于每个子图,我们根据对象的类标签分配对象之间的不同关系。表4给出了对象关系的各种示例。为了建立像“被包围”这样的关系,我们交叉参考像素级坐标,以验证一个对象是否完全包含在另一个对象中。

表达式生成:为了模拟自然语言表达式,我们使用预定义文本模板。短语模板包含表3中的属性{a1,…,a5}。同一类的一组对象的表达式公式化为:

类似地,句子模板结合了关系属性a5,以通过这种结构在两个对象之间建立连接:

Visual Grounding:使用我们的简短描述作为参考表达来创建三种不同类型的问答对,即基础图像描述、参考表达和区域级字幕,如表1所示。

四、实验

1、实验细节

我们使用预训练的CLIP-ViT和LLM(Vicuna-v1.5)初始化我们的模型的权重,并应用LoRA微调。利用LoRA,我们通过低秩自适应来细化参数Wq和Wv,在我们的实现中,指定秩r设置为64。该模型在整个过程中始终以504×504的图像分辨率进行训练。每个训练步骤都包含专门为训练过程中的各种视觉语言任务设计的多模态指令模板。我们使用AdamW优化器和余弦学习速率调度器来训练我们的模型。我们将全局批量大小保持为144。我们分两个阶段训练我们的模型,首先,我们使用所有数据集训练1个时期,相应地训练2400步,然后是第2阶段,我们只在grounding dataset上训练1600步。

2、数据集介绍:

场景分类:

AID:AID是根据Google Earth图像编译的大规模航空图像集合,有30个类别,例如河流、密集住宅区等。这些图像由遥感图像解释领域的专家标记。总的来说,AID数据集包含 30 个类别的 10,000 张图像。这些图像是在不同的国家和不同的天气条件下拍摄的。

(AID 数据集的 20%用于评估)

UCMerced:UCMerced 是一个土地利用场景分类数据集,包含 2,100 张图像和 21 个类别。每张图像的大小为 256×256。

(使用整个 UCMerced数据集作为零样本测试集。)

我们提示模型使用所有类别,并提示仅使用一个单词/短语对图像进行分类。

视觉问答:

RSVQA-HRBEN: RSVQA-HRBEN包含 10,569 张高分辨率照片和 1,066,316 个问答对,其中 61.5%、11.2%、20.5% 和 6.8% 分别分为训练集、验证集、测试集 1 和测试集 2。该数据集具有三种问题类型:存在、比较和计数。

(使用 RSVQA-HRBEN 测试集 2,有47k 问题答案对评估)

RSVQA-LR :RSVQA-LR 由 772 个低分辨率图像和 77,232 个问答对组成,其中 77.8%、11.1% 和 11.1% 分别用于训练、验证和测试。有四种不同类别的问题:存在、比较、农村/城市和计数。

评估过程中省略了面积和计数问题,将答案是数字的量化为多个类别。例如,在 RSVQA-LRBEN数据集中,计数问题被量化为五类:0、1 到 10 之间、11 到 100 之间、101 到 1000 之间以及大于 1000。为了评估,我们使用测试一组包含 7k 问题-答案对的 RSVQA-LRBEN。

为了将答案限制为简单的是/否以及农村/城市问题类型,我们在每个问题末尾添加合适的提示。

Visual Grounding:

对这个任务,使用SAMRS的验证集,用上面介绍数据集构建流程来重新构建了一个test benchmark,有7653 [refer], 758 [grounding], and 555 grounding description questions. 我们使用accuracy@0.5作为评估度量。如果预测框与GT框的重叠超过0.5IoU,则计算精度。

3、结果:


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/463278.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Matlab的车牌识别算法,Matlab实现

博主简介: 专注、专一于Matlab图像处理学习、交流,matlab图像代码代做/项目合作可以联系(QQ:3249726188) 个人主页:Matlab_ImagePro-CSDN博客 原则:代码均由本人编写完成,非中介,提供…

C语言的位操作与位字段

C语言中的位操作允许程序员直接在整型变量的单个位或位组上进行操作。这种操作在许多低级编程任务中非常有用,尤其是在嵌入式系统编程中,如硬件操作、设备驱动及性能优化等场景。位操作主要使用以下几种位操作符: & (按位与&a…

Rabbit MQ详解

写在前面,由于Rabbit MQ涉及的内容较多,赶在春招我个人先按照我认为重要的内容进行一定总结,也算是个学习笔记吧。主要参考官方文档、其他优秀文章、大模型问答。自己边学习边总结。后面有时间我会慢慢把所有内容补全,分享出来也是希望可以给…

软考高级:软件工程螺旋模型概念和例题

作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

小清新卡通人物404错误页面模板源码

小清新卡通人物404错误页面模板源码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面 下载地址 小清新卡通人物404错误页面模板源码

uiCA模拟器和bHive benchmark的使用

概念 uiCA 基本块吞吐量预测器 github地址:GitHub - andreas-abel/uiCA: uops.info Code Analyzer uiCA是一个模拟器,可以预测基本块在最新的英特尔微体系结构上的吞吐量。除此之外,它还提供了代码执行的洞察。 uiCA基于来自uops.info的数…

分布式搜索引擎elasticsearch(2)

1.DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1.1.DSL查询分类 Elasticsearch提供了基于JSON的DSL([Domain Specific Language](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html))来定义查…

获取扇区航班数

1、Spark Streaming清洗服务,接收kafka中Topic为“task_ATC”中的数据,保存在MySQL中。 打开SpringBoot项目BigData-Etl-KongGuan 请认真阅读:在前面的“使用Spark清洗统计业务数据并保存到数据库中”任务阶段中应该已经完成了所有Topic的数…

瑞_Redis_短信登录(二)

文章目录 项目介绍1.1 项目准备1.2 基于Session实现登录流程1.2.1 发送短信验证码1.2.2 短信验证码登录、注册1.2.3 校验登录状态 1.3 实现发送短信验证码功能1.3.1 页面流程1.3.2 代码实现 1.41.51.6 🙊 前言:本文章为瑞_系列专栏之《Redis》的实战篇的…

16 stack和queue习题

最小栈 最小栈 思路 用两个栈实现,一个栈正常插入和删除,另一个栈记录当前最小元素,第一个栈删除的时候,如果和最小的栈顶元素相等,最小的栈也删除元素 class MinStack { public:MinStack() {}void push(int val) {…

关于使用过别人的GitHub/Gitee账号提交东西到仓库后,自己的仓库提交失败问题的解决方法

目录 引言 问题出现的原因 问题的解决方法 打开控制面板 方法一: 方法二: 进入Windows凭据管理器 结语 引言 这个问题折磨了我将近三个小时,为了减少有人和我一样走弯路且防止自己忘记解决方法,便有了这篇文章。 问题出现…

RequestResponse使用

文章目录 一、Request&Response介绍二、Request 继承体系三、Request 获取请求数据1、获取请求数据方法(1)、请求行(2)、请求头(3)、请求体 2、通过方式获取请求参数3、IDEA模板创建Servlet4、请求参数…

android studio设置flutter和dart的sdk配置

提示没有配置dart sdk的时候,其实只需要配置一下flutter的sdk就可以了,因为flutter的安装包里面包含了dart的sdk: 按照提示选中这个flutter的安装包路径就可以了: 并且需要开启windows的开发者开关:start ms-settings:…

C++/CLI介绍

什么是C++/CLI C++/CLI的链接 上图实现cli编译的obj文件和非cli编译的目标文件之间实现链接。 上图实现cli编译的obj文件和lib文件之间进行链接 上图实现cli编译的代码对非cli编译的dll的引用 C++/CLI基本语法 基本类型

【Java基础】IO流(三):字符流的FileReader(文件字符输入流)和 FileWriter(文件字节输出流)

目录 字符流 1、FileReader(字符输入流) 1.1、无参的read( )方法示例 ​编辑 1.2、有参的read(char[ ] buffer)方法示例 2、FileWriter(字符输出流) 字符流 字符流的底层其实就是字节流,即字符流 字节流 字符集…

mac激活pycharm,python环境安装和包安装问题

1.PyCharm到官网下载就行 地址:Other Versions - PyCharm (jetbrains.com) 2.MacOS 下载python环境,地址: Python Releases for macOS | Python.org 3.PyCharm环境配置: 4. 如果包下载不下来可以换个源试试 pip install py…

前后端分离:现代Web开发的协作模式

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【NTN 卫星通信】 TN和多NTN配合的应用场景

1 场景描述 此场景描述了农村环境,其中MNO (运营商TerrA)仅在城市附近提供本地地面覆盖,而MNO (SatA)提供广泛的NTN覆盖。SatA使用GSO轨道和NGSO轨道上的卫星。SatA与TerrA有漫游协议,允许:   所有TerrA用户的连接,当这些用户不…

Linux批量注释

1.注释行 1.按ctrlv进入块选择模式 ,然后上下键选中需要注释的行 2.按shifti(也就是大写I) 然后输入// 或 # 3.按ESC键 2.取消注释行 1.按ctrlv进入块选择模式, 然后上下键选中需要取消注释的行 2.然后按d

【工具】一键生成动态歌词字幕

那眼神如此熟悉 让人着迷无力抗拒 一次又一次相遇 在眼前却遥不可及 命运总爱淘气 将一切都藏匿 曾有你的回忆 无痕迹 若不是心心相吸 又怎么会一步一步靠近 🎵 董真《思如雪》 下载LRC歌词 https://www.musicenc.com/article/50287.htmlhttp…