蓝桥杯深度优先搜索|剪枝|N皇后问题|路径之谜(C++)

搜索:暴力法算法思想的具体实现
搜索:通用的方法,一个问题如果比较难,那么先尝试一下搜索,或许能启发出更好的算法
技巧:竞赛时遇到不会的难题,用搜索提交一下,说不定部分判题数据很弱,得分了

暴力法
把所有的可能性都列举出来,一一验证,简单直接
利用计算机强大的计算能力和存储能力
依赖的是递归

深度优先搜索

Depth First Search 即 DFS,意为深度优先搜索,是所有的搜索手段之一。它是从某个状态开始,不断进行状态转移,直到不能转移后,向后回退,一直到遍历完所有的状态。

深度优先搜索基本概念

作为搜索算法的一种,DFS 主要是用于解决 NP 完全问题。但是,深度优先搜索算法的时间复杂度较高,深度优先搜索是 O ( n ! ) O(n!) O(n!) 的阶乘级算法,它的效率非常低,在数据规模变大时,此算法就难以解决当前的问题了。
所以搜索算法使用于状态节点较小规模的问题。

DFS 的设计步骤

按照定义设计:

  1. 确定该题目的状态(包括边界)
  2. 找到状态转移方式
  3. 找到问题的出口,计数或者某个状态
  4. 设计搜索

DFS基础:递归和记忆化搜索

形式上,递归函数是自己调用自己,是一个不断重复的过程
递归的思想是把大问题逐步缩小,直到变成最小的同类问题的过程,而最后的小问题的解是已知的,一般是给定的初始条件
到达最小问题之后,再回溯,把小问题的解逐个带回给更大的问题,最终大问题也得到了解决
递归有两个过程:递归前进、递归返回
在递归过程中,由于大问题和小问题的解决方法完全一样,那么大问题的代码和小问题的代码可以写成一样
一个递归函数,直接调用自己,实现了程序的复用

DFS的代码框架
ans    //答案,用全局变量表示
def dfs (层数 (状态), 其他参数):
	if (条件判断)      //到达最底层(达到最终状态),或者满足条件退出
		更新答案       //答案一般用全局变量表示
		return        //返回到上一层

	剪枝              //在进一步DFS之前剪枝
	for (枚举下一层可能的情况):
	//对每一个情况继续DFS
		if (used[i] == 0):    
		//如果状态i没有用过,就可以进入下一层
			used[i] = 1  //称为保存现场,占有现场
			//标记状态i,表示已经用过,在更底层不能再使用
			dfs(层数+1, 其他参数)  
			//下一层
			used[i] = 0  //称为恢复现场,释放现场
			//恢复状态,回溯时,不影响上一层对这个状态的使用

	return   //返回到上一层

剪枝
题目中给了要求是y<30
当扩展到y=29这个点以后,就不需要继续往后扩展了
伪代码:

int check(参数)
{
    if(满足条件)
        return 1;
    return 0;
}
bool pd(参数){
    相应操作
}
void dfs(int step)
{
        判断边界pd()
        {
            不在边界内,即回溯
        }
        尝试每一种可能
        {
               满足check条件

               标记

               继续下一步dfs(step+1)

               恢复初始状态(回溯的时候要用到)
        }
}
DFS:剪枝

剪枝:把不会产生答案的,或不必要的枝条剪掉
剪枝的关键:剪什么枝、在哪里剪
剪枝是搜索常用的优化手段,常常能把指数级的复杂度,优化到近似多项式的复杂度
可行性剪枝:对当前状态进行检查,如果当前条件不合法就不再继续,直接返回
搜索顺序剪枝:搜索树有多个层次和分支,不同的搜索顺序会产生不同的搜索树形态
最优性剪枝:在最优化问题的搜索过程中,如果当前花费的代价已超过前面搜索到的最优解,那么本次搜索已经没有继续进行下去的意义,停止对当前分支的搜索
排除等效冗余:搜索不同的分支,最后的结果是一样的,那么只搜一个分支就够了
记忆化搜索:在递归的过程中,有许多分支被反复计算,会大大降低算法执行的效率。将已经计算出来的结果保存起来,以后需要用到的时候直接取出结果,避免重复运算,从而提高了算法的效率

DFS 题目讲解

1. 状态搜索代表: N 皇后问题

题目链接
难度: 简单
标签: DFS
题目描述:
在N×N的方格棋盘放置了N 个皇后,使得它们不相互攻击(即任意 22 个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成 45 角的斜线上。你的任务是,对于给定的N,求出有多少种合法的放置方法。
输入描述:
输入中有一个正整数 N≤10,表示棋盘和皇后的数量
输出描述:
为一个正整数,表示对应输入行的皇后的不同放置数量。
输入输出样例:
示例:
输入:

5

输出:

10

运行限制:

    最大运行时间:1s
    最大运行内存: 256M

解题思路:

二维搜索问题,有一个x坐标一个y坐标
下面是用递归的深度优先搜索求解 n 皇后问题的算法描述:
这里用一个 N×N 的矩阵来表示棋盘,但是我们不需要定义这样的数组,只要心中有 N×N 的棋盘即可。

  1. 算法开始:
    当前行设为第一行,当前列设为第一列,从第一行第一列开始搜索,即只能让皇后从第一行放到第 n 行。
    这样在每次判断是否满足情况时我们不用去判断是否皇后在相同行。
    我们只用判断之前的 1 到 a−1 个皇后的位置和当前第 a 个皇后的位置是否属于同一列或者斜线,判断是否同一列。
  2. 判断边界:
    在当前行,当前列的位置上判断是否满足条件(即保证经过这一点的行,列与斜线上都没有两个皇后),若不满足,跳到第 5 步,即不符合边界条件。
    首先说一下,什么叫不符合边界条件,不只是跳出了搜索范围,剪枝也可以从这里开始,比如这里不满足条件,向下继续搜索也不会再有结果。
    这可以理解为超出边界的剪枝,我们的边界只得可能存在解的范围,这里已经超出有解的范围,必然要被踢出。
    判断条件:
    我们用数组 x [ a ] = i x[a]=i x[a]=i 来表示第 a 个皇后的位置在第 a 行第 i 列,我们不用考虑是否在同一行的问题你,我们只用判断之前的 1 到 a−1 个皇后的位置和当前第 a 个皇后的位置是否属于同一列或者斜线。
    判断是否属于同一列: 就判断 x [ a ] x[a] x[a] 是否等于 x [ i ] x[i] x[i]; 判断是否属于同一斜线:等同于判断行之差是否等于列之差也,即 a b s ( x [ k ] − x [ i ] ) ≠ a b s ( k − i ) x [ k ] ≠ x [ i ] \begin{array}{} abs(x[k]−x[i])\ne abs(k−i)\\ x[k]\ne x[i] \end{array} abs(x[k]x[i])=abs(ki)x[k]=x[i]
  3. 搜索过程:
    调用 Check 函数。
    如果 边界条件,就继续调用放下一个皇后的位置
  4. Check 函数:
    如果当搜索到第 N+1 行的时候,即代表前 N 行已经搜索完了,所以这个时候正好求出了一个解,记录加一。
  5. 在当前位置上不满足条件的情形,进行回溯
搜索过程

![[Pasted image 20240310171129.png]]

回溯,把放过的收起来
不是直接回溯到最开始,而是从第五行开始往第一行走,一层一层回溯,回到之前的每一行,继续往下一列走,判断有没有新的解,没有的话,就继续往前回溯
![[Pasted image 20240310171558.png]]

回溯到第二行,找到新的解,停止回溯,往后搜索,寻找新的解
![[Pasted image 20240310171716.png]]

找到新的解,ans+1,第五行没有别的解了,往前回溯

代码

C++ 语言描述:
占用的代码

#include <iostream>
#include <cstdio>
using namespace std;
int x[15] = {0};   //已知N小于10,建15没有问题
int sum,n;

//判断是不是在同一列或者同一斜线上
int PD(int k)
{
    for(int i=1; i<k; i++)
    {
        if(abs(k-i)==abs(x[k]-x[i]))
            return 0;
        else if (x[k]==x[i])
            return 0;
        //即判断是否符合条件来放,i表示皇后所在的行数,x[i]表示所在的列数,
        //所以前面那个条件用来判断两个皇后是否在对角线上,后面用来判断是否在同一列上。
        //行数不需要判断,因为他们本身的i就代表的是行数
    }
    return 1;
}

bool check(int a)
{

    if(a>n)   //当放到n+1的时候,代表前n个已经放好了
        sum++;   //前面的放好了,ans+1
    else
        return 0;
    return 1;
}

void DFS(int a)
{
    if(check(a))  //判断是不是走到第n+1层,找到a了,直接返回
        return ;
    else  //如果没找到,继续往下找
        for(int i=1; i<=n; i++)  //从这一行的第一个往后放
        {
	        if (x[a] != 0) //当前位置已被放过
		        continue;
            x[a]=i; 
                //第a个皇后放的列数,标记使用
            if(PD(a)) 
                    //判断是否能放这步
                DFS(a+1);
                    //能的话进行下一个皇后的放置
            x[a] = 0;
	                //释放现场
                    //不能就下一列
        }
}
int main()
{
    cin>>n;
    //表示几个皇后
    DFS(1);
    //每次都从第一个皇后开始
    cout<<sum<<endl;
    return 0;
}

不占用的代码

#include <iostream>
#include <cstdio>
using namespace std;
int x[15] = {0};
int sum,n;

int PD(int k)
{

    for(int i=1; i<k; i++)
    {
        if(abs(k-i)==abs(x[k]-x[i]))
            return 0;
        else if (x[k]==x[i])
            return 0;
        //即判断是否符合条件来放,i表示皇后所在的行数,x[i]表示所在的列数,
        //所以前面那个条件用来判断两个皇后是否在对角线上,后面用来判断是否在同一列上。
        //行数不需要判断,因为他们本身的i就代表的是行数
    }
    return 1;
}

bool check(int a)
{

    if(a>n)
        sum++;
    else
        return 0;
    return 1;
}

void DFS(int a)
{
    if(check(a))
        return ;
    else
        for(int i=1; i<=n; i++)
        {
            x[a]=i;
                //第a个皇后放的列数
            if(PD(a))
                    //判断是否能放这步
                DFS(a+1);
                    //能的话进行下一个皇后的放置
            else continue ;
                    //不能就下一列
	        }
}
int main()
{
    cin>>n;
    //表示几个皇后
    DFS(1);
    //每次都从第一个皇后开始
    cout<<sum<<endl;
    return 0;
}
2. 图的路径搜索代表-路径之谜

题目链接
难度: 中等
标签: DFS, 2016, 国赛
题目描述:
小明冒充 X 星球的骑士,进入了一个奇怪的城堡。
城堡里边什么都没有,只有方形石头铺成的地面。
假设城堡地面是 n×n 个方格。如下图所示。
地图
按习俗,骑士要从西北角走到东南角。可以横向或纵向移动,但不能斜着走,也不能跳跃。每走到一个新方格,就要向正北方和正西方各射一箭。(城堡的西墙和北墙内各有 n 个靶子)同一个方格只允许经过一次。但不必走完所有的方格。如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?有时是可以的,比如上图中的例子。
本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)
输入:
第一行一个整数 N (0≤N≤20),表示地面有 N×N 个方格。
第二行 N 个整数,空格分开,表示北边的箭靶上的数字(自西向东)
第三行 N 个整数,空格分开,表示西边的箭靶上的数字(自北向南)
输出:
输出一行若干个整数,表示骑士路径。
为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号: 0,1,2,3 ⋯⋯
输入输出样例:
输入

4
2 4 3 4
4 3 3 3

比如,上图中的方块编号为:

箭靶2434
40123
34567
3891011
312131415

输出

0 4 5 1 2 3 7 11 10 9 13 14 15

运行限制:

最大运行时间:1s
最大运行内存: 128M

解题思路:
这里用一个 N×N 的矩阵来表示城堡的位置,横向、纵向标号 1−N。
我们采用逆推法,既然原题目是走到哪里射一支箭,那我们就走到那里之后拔一支箭,如果最后得到所有的靶子上都没有箭了,由于题目的路径唯一,那就证明我们找到了题目所要求的路径。

  1. 算法开始:
    当前行设为第一行,当前列设为第一列,从第一行第一列开始搜索。
    然后从左上角初始位置,按照题目意思进行寻路。
  2. 判断边界:
    在当前行,当前列的位置上判断是否满足条件,若不满足,跳到第 5 步,即不符合边界条件。 判断条件如下:
    • f l a g [ x ] [ y ] = = 1 flag[x][y]==1 flag[x][y]==1 标记数组已经被标记,已被走过,不能再走,超出边界
    • x < 1 x<1 x<1 从左侧走出方格。
    • x > n x>n x>n 从右侧走出方格。
    • y < 1 y<1 y<1 从上侧走出方格。
    • y > n y>n y>n 从下侧走出方格。
    • c o l [ x ] < = 0 col[x]<=0 col[x]<=0 没走到右下角,箭用完了。
    • r o l [ y ] < = 0 rol[y]<=0 rol[y]<=0 没走到右下角,箭用完了
  3. 搜索过程:
    调用 Check 函数。 如果边界条件满足,就继续调用搜索,找到下一步的位置
  4. check(参数):
    如果当搜索到 x = n , y = n x=n,y=n x=n,y=n 时,且靶子上的箭都没了,按就找到了答案。
    按照题目输出即可。
  5. 在当前位置上不满足条件的情形,进行回溯,并还原现场
    C++ 语言描述:
#include <bits/stdc++.h>

using namespace std;

struct PII
{
    int first;
    int second;
};

const int N = 30;
int rol[N];
int col[N];
int n;//格子数 长宽从1到n
bool flag[N][N]; //用来标记是否走过
vector<PII> res;


//---------图的路径搜索常用方向移动表示-------

int dx[4]= {0,1,-1,0};
int dy[4]= {1,0,0,-1};

// 两两组合形成上下左右四个方向
//      1------------------> x
//      |
//      |
//      |
//      |
//      |
//      |
//      |
//      ↓
//      y

// dx[0]=0 dy[0]=1 那么代表向下的方向
// dx[1]=1 dy[1]=0 那么代表向右的方向
// dx[2]=-1 dy[2]=0 那么代表向左的方向
// dx[3]=0 dy[3]=-1 那么代表向上的方向

//--------------------------------------------

bool  check(int x, int y) //判断走过的路径的箭靶数是否与目标相同
{
    if(x==n && y==n)  //表示走到右下角了
    {
        for(int i=1; i<=n; i++)  //从1~n开始判断北边的靶子有没有箭
        {
            if(col[i]!=0)
            {
                return false;
            }
            //如果箭靶上的数目不为0,根据逆推,我们通过当前路径得不到箭靶上的结果
        }
        for(int i=1; i<=n; i++)  //判断西边的靶子上有没有箭
        {
            if(rol[i]!=0)
            {
                return false;
            }
            //如果箭靶上的数目不为0,根据逆推,我们通过当前路径得不到箭靶上的结果
        }
        for(int i=0; i<res.size(); i++)  //如果有,把答案进行输出
        {
            int x=res[i].first;
            //x 轴坐标
            int y=res[i].second;
            //y 轴坐标
            int sum=n*(x-1)+y-1 ;
            // 通过计算的到为题目要求的坐标系
            cout <<sum<< " ";
        }
        cout << endl;
        return false;
        // 成功终止
    }
    return true; //继续搜索
    //关于终止还是继续我们交给判定即可
}
bool pd(int x2,int y2) //边界判断
{
    if(flag[x2][y2]==1)
        return 0;
    //已被走过,不能再走,超出边界
    else if(x2<1)
        return 0;
    //从左侧走出方格
    else if(x2>n)
        return 0;
    //从右侧走出方格
    else if(y2<1)
        return 0;
    //从上侧走出方格
    else if(y2>n)
        return 0;
    //从下侧走出方格
    else if(col[x2]<=0)
        return 0;
    //没走到右下角,箭用完了
    else if(rol[y2]<=0)
        return 0;
    //没走到右下角,箭用完了
    else return 1;
    //符合边界条件,可以继续执行搜索
}

void dfs(int x,int y)
{
    if(!check(x,y))  //判断是不是符合规则
    {
        return ;
        //包含不符合规则的地方,回溯,用于剪枝
    }
    else  //如果符合规则,就扩展
    {
        for(int i=0; i<4; i++)
        {
            int xt=dx[i]+x;  //完成上下左右四个方向的移动
            int yt=dy[i]+y;
            if(!pd(xt,yt))
            {
                continue ;
                //不符合要求继续换方向搜索
            }
            else
            {
                //因为要进行位置转移,我们给它起个名字,叫作案现场
                //比如向下移动
                flag[xt][yt]=true;   //搜索到这个点,把它标记起来
                col[xt]--;   //北边拔一个箭
                rol[yt]--;   //西边拔一个箭
                res.push_back({xt,yt}); //把每次路径的点放入vector

				//继续向下搜索
                dfs(xt,yt);
                //搜索回溯后,因为没有找到正确答案,所以要回复作案现场,返回到搜索之前
                res.pop_back();
                flag[xt][yt]=false;
                col[xt]++;
                rol[yt]++;
            }
        }
    }
}

int main()
{
    cin >> n;
    for(int i=1; i<=n; i++)
        cin >> rol[i];
    for(int i=1; i<=n; i++)
        cin >> col[i];
    flag[1][1]=true;
    col[1]--;
    rol[1]--;
    res.push_back({1,1});
    dfs(1,1);
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/458288.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

李三清研究引领力学定律新篇章,光子模型图揭秘

一周期内&#xff0c;垂直&#xff0c;曲率不变&#xff0c;方向转向互变&#xff0c;正向反向互变&#xff0c;左旋右旋互变。变无限粗或变无限厚才发生质变&#xff0c;且属于由内向外变换&#xff0c;所以对应变换就是由内点向外点变换。 由于方向转向不能分割&#xff0c;…

画图实战-Python实现某产品全年销量数据多种样式可视化

画图实战-Python实现某产品全年销量数据多种样式可视化 学习心得Matplotlib说明什么是Matplotlib&#xff1f;Matplotlib特性Matplotlib安装 产品订单量-折线图某产品全年订单量数据数据提取和分析绘制折线图 产品订单&销售额-条形图某产品全年订单&销售额数据绘制条形…

Ollama管理本地开源大模型,用Open WebUI访问Ollama接口

现在开源大模型一个接一个的&#xff0c;而且各个都说自己的性能非常厉害&#xff0c;但是对于我们这些使用者&#xff0c;用起来就比较尴尬了。因为一个模型一个调用的方式&#xff0c;先得下载模型&#xff0c;下完模型&#xff0c;写加载代码&#xff0c;麻烦得很。 对于程…

windows中如何将已安装的node.js版本进行更换

第一步&#xff1a;先清除已经安装好的node.js版本 1.按健winR弹出窗口&#xff0c;键盘输入cmd,然后敲回车&#xff08;或者鼠标直接点击电脑桌面最左下角的win窗口图标弹出&#xff0c;输入cmd再点击回车键&#xff09; 然后进入命令控制行窗口&#xff0c;并输入where node…

upload文件上传漏洞复现

什么是文件上传漏洞&#xff1a; 文件上传漏洞是指由于程序员在对用户文件上传部分的控制不足或者处理缺陷&#xff0c;而导致的用户可以越过其本身权限向服务器上上传可执行的动态脚本文件。这里上传的文件可以是木马&#xff0c;病毒&#xff0c;恶意脚本或者WebShell等。“…

lua制作flash钢琴

效果预览 apk使用manaluax打包&#xff0c;源码在文末提供。 应用体验下载地址&#xff1a;https://www.magicalapk.com/appview?id1705213059764 源码 布局代码 {LinearLayout;gravity"center";layout_height"fill";orientation"vertical";…

蓝桥杯--冶炼金属

目录 一、题目 二、解决代码 &#xff08;1&#xff09;版本一&#xff08;报错&#xff1a;超时&#xff09; 代码分析 &#xff08;2&#xff09;版本二&#xff08;不会超时&#xff09; 代码分析 &#xff08;3&#xff09;版本三&#xff08;最终精简版&#xff09;…

【数据分析】数据分析介绍

专栏文章索引&#xff1a;【数据分析】专栏文章索引 目录 一、介绍 二、生活中的数据分析 1.无处不在的数据 2.为什么要进行数据分析&#xff1f; 三、数据挖掘案例 1.案例分析 一、介绍 数据采集&#xff1a;数据采集是指从不同来源收集原始数据的过程&#xff0c;包括…

孙宇晨最新研判:加密货币将成为全球金融基础设施的一部分

近日,波场TRON创始人、火币HTX全球顾问委员会委员孙宇晨接受了在加密社区有重要影响力的媒体平台Bankless的专访,就自己的从业经历、涉足加密行业的理想、波场TRON本身的发展和未来的市场走向等话题进行了详细的分享。 孙宇晨认为,波场TRON的使命是为那些没有银行账户的人提供…

Ubuntu——以桌面应用为主的Linux发行版操作系统

目录 一、Ubuntu简介 二、Ubuntu下载及安装 1.Swap分区的作用 2.语言环境 3.软件管理——apt 3.1配置文件 3.2软件源配置文件格式 3.3DPKG常用命令 三、常用命令总结 1. date——显示或设定系统的日期和与时间 2.cal——显示日历 3.设置时区 4.修改密码——passwd…

学习使用js获取当前ip地址的方法,使用第三方API获取ip地址

学习使用js获取当前ip地址的方法,使用第三方API获取ip地址 使用 DNS 查询使用第三方 API 使用 DNS 查询 DNS 是一种用于解析主机名为 IP 地址的系统。可以使用 JavaScript DNS 查询来获取本机IP地址。下面是如何使用 JavaScript 进行DNS查询的示例代码。 <p class"loc…

【数学】【计算几何】1453. 圆形靶内的最大飞镖数量

作者推荐 视频算法专题 本文涉及知识点 数学 计算几何 LeetCoce:1453. 圆形靶内的最大飞镖数量 Alice 向一面非常大的墙上掷出 n 支飞镖。给你一个数组 darts &#xff0c;其中 darts[i] [xi, yi] 表示 Alice 掷出的第 i 支飞镖落在墙上的位置。 Bob 知道墙上所有 n 支飞…

CASIA-HWDB手写体数据集gnt生成为png格式

👑一、数据集获取 1.1 官方链接获取gnt文件 http://www.nlpr.ia.ac.cn/databases/download/feature_data/HWDB1.1trn_gnt.ziphttp://www.nlpr.ia.ac.cn/databases/download/feature_data/HWDB1.1tst_gnt.zip 1.2 百度网盘获取gnt文件 链接:https://pan.baidu.com/s/1pKa…

上位机图像处理和嵌入式模块部署(qmacvisual条件判断)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 之前我们在qmacvisual里面先创建项目&#xff0c;然后继续创建流程&#xff0c;这其实是一种顺序流程。更普遍的情况是&#xff0c;客户希望有些条…

Windows安装Kibana之保姆级教程

Kibana 安装 介绍&#xff1a;一款开源的数据分析和可视化平台&#xff0c;可对Elasticsearch 索引中的数据进行搜索、查看、交互操作&#xff1b;可理解为 Elasticsearch 的web管理后台 下载&#xff1a;点击https://www.elastic.co/cn/downloads/past-releases#kibana-->…

同城便民小程序源码系统 带完整的安装代码包以及搭建教程

同城便民小程序源码系统的开发&#xff0c;源于对市民生活需求的深入洞察。在日常生活中&#xff0c;人们经常需要查询各类便民信息&#xff0c;如房屋出租、二手交易、家政服务等。然而&#xff0c;传统的信息发布方式往往存在信息分散、查找困难等问题。因此&#xff0c;开发…

C# 线性搜索算法

线性搜索被定义为一种顺序搜索算法&#xff0c;从一端开始&#xff0c;遍历列表中的每个元素&#xff0c;直到找到所需的元素&#xff0c;否则搜索将继续&#xff0c;直到数据集的末尾。 线性搜索算法 线性搜索算法如何工作&#xff1f; 在线性搜索算法中&#xff1a; …

数字信封

一、概念 数字信封是将对称密钥通过非对称加密&#xff08;即&#xff1a;有公钥和私钥两个&#xff09;的结果分发对称密钥的方法。数字信封是实现信息保密性验证的技术。 二、过程描述 在数字信封中&#xff0c;信息发送方采用对称密钥来加密信息内容&#xff0c;然后将此…

YOLOv1预测阶段后处理----Non-maximum suppression(NMS非极大值抑制)

前言&#xff1a;预了解 NMS&#xff0c;去掉冗余的框。在目标检测中&#xff0c;不论是最初的region proposal&#xff0c;还是后来的anchor box&#xff0c;不可避免的一个问题就是对于同一个物体&#xff0c;会预测出多个bounding box&#xff0c;如下左图所示。而NMS所做的…