画图实战-Python实现某产品全年销量数据多种样式可视化

画图实战-Python实现某产品全年销量数据多种样式可视化

  • 学习心得
  • Matplotlib说明
    • 什么是Matplotlib?
    • Matplotlib特性
    • Matplotlib安装
  • 产品订单量-折线图
    • 某产品全年订单量数据
    • 数据提取和分析
    • 绘制折线图
  • 产品订单&销售额-条形图
    • 某产品全年订单&销售额数据
    • 绘制条形图
  • 某产品xx-直方图
  • 某产品xx-散点图
  • 某产品xx-饼图
  • 某产品xx-多图效果
  • 总结

学习心得

  • 有时候我们需要对某些数据进行分析,得到一些可视化效果图,而这些效果图可以直观展示给我们数据的变化趋势;
  • 比如某产品的月销量数据、销售额的地区分布、销售增长和季节的变化情况、产品的贡献度分析等等;
  • 本文主要针对某产品全年销量数据,绘制各种不同样式的图表,以不同样式展示数据;
  • 学习本文建议对Python的matplotlib第三库有一定的了解。

Matplotlib说明

什么是Matplotlib?

  • Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形;
  • Matplotlib可生成绘图、直方图、功率谱、条形图、错误图、散点图、折线图等;
  • Matplotlib是Python生态系统的一个重要组成部分,是用于可视化的绘图库;
  • Matplotlib提供了一整套和matlab相似的命令API和可视化界面,可以生成出版质量级别的精美图形。

Matplotlib特性

  • Matplotlib图表中的元素包含以下内容:

A、X轴和Y轴;
B、X轴和Y轴刻度;
C、X轴和Y轴标签;
D、绘图区域。

  • 关于hold属性:

A、hold属性默认为True,可在一幅图中绘制多个曲线;
B、将hold属性修改为False,每一个plot都会覆盖前面的plot(这种方法不推荐,建议使用默认的)。

  • 常用方法:

A、可使用grid方法为图添加网格线;
B、还可以使用其他方法,如axis方法、xlim方法、ylim方法、legend方法;

  • 关于配置方面:

matplotlib配置信息是从配置文件读取的。在配置文件中可以为matplotlib的几乎所有属性指定永久有效的默认;
主要为永久配置和动态配置。

Matplotlib安装

直接使用pip安装即可:

pip install matplotlib

产品订单量-折线图

某产品全年订单量数据

  • 以下是某产品全年的销量数据:
某产品JanFebMarAprMayJunJulAugSepOctNovDec
订单量(indent)15334250115220866659433950
退货量(returned)61318235598423125221724
  • 全年12个月数据中,每个月对应有产品的订单量和退货量。

数据提取和分析

  • 我们可以把月份用以下变量表示:
month = ["Jan", "Feb", "Mar", "Apr", 
         "May", "Jun", "Jul", "Aug", 
         "Sep", "Oct", "Nov", "Dec"]
         
print(f"月份为:{month}")
# 输出:月份为:['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

复制运行

  • 产品对应的销量分两种,一种是订单量,一种是退货量,可用两个变量来存放数据:
# 订单量
indent = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]

# 退货量
returned = [6, 13, 18, 23, 55, 98, 42, 31, 25, 22, 17, 24]

print(f"每月订单量为:{indent}")
print(f"每月退货量为:{returned}")

绘制折线图

  • 折线图中我们绘制两条折线,一条是每月的退货量,一条是每月的订单量;
  • 而折线就是坐标组成,这里就需要多个两个坐标,比如x1、y1、x2、y2;
  • 针对我们提供的数据,可以把坐标定义为:

x1 = month y1 = indent
x2= month y2 = returned

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as plt

month = ["Jan", "Feb", "Mar", "Apr",
         "May", "Jun", "Jul", "Aug",
         "Sep", "Oct", "Nov", "Dec"]
print(f"月份为:{month}")

# 订单量
indent = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]

# 退货量
returned = [6, 13, 18, 23, 55, 98, 42, 31, 25, 22, 17, 24]
print(f"每月订单量为:{indent}")
print(f"每月退货量为:{returned}")

# 绘制折线图
plt.plot(month, indent, label='订单量',
         linewidth=2, color='r', marker='o',
        markerfacecolor='blue', markersize=8)

plt.plot(month, returned, label='退货量',
        linewidth=2, color='y', marker='o',
        markerfacecolor='blue', markersize=8)

plt.xlabel('月份')
plt.ylabel('数量')
plt.title('某产品全年订单销售情况')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行上边代码后折线图的效果为:

请在此添加图片描述

产品订单&销售额-条形图

某产品全年订单&销售额数据

  • 以下是某产品全年的销量数据:
订单量(indent/m1)10/530/750/970/1190/13110/15130/17150/19
退货量(returned/m2)20/340/560/780/910011120/13140/15160/17
  • 图中的意思为对应的订单量的销售额和对应的退货量的价格。

绘制条形图

  • 条形图中我们绘制双条形,一条是每月的退货量及对应价格,一条是每月的订单量和销售额;
  • 针对我们提供的数据,可以把坐标定义为:

x1 = indent y1 = m1
x2= returned y2 = m2

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as plt

# 订单量
indent = [10, 30, 50, 70, 90, 110, 130, 150]
# 销售额
m1 = [5, 7, 9, 11, 13, 15, 17, 19]

# 退货量
returned = [20, 40, 60, 80, 100, 120, 140, 160]
# 价格
m2 = [3, 5, 7, 9, 11, 13, 15, 17]

# 绘制折线图
plt.bar(indent, m1, width=3, label='订单量-销售额', color='r', )
plt.bar(returned, m2, width=3, label='退货量-价格', color='y')

plt.xlabel('数量')
plt.ylabel('价格')
plt.title('某产品全年订单&销售额情况')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行以上代码后效果图为:

请在此添加图片描述

注意:后续的数据和操作逻辑和前边的一样,为了快速了解其使用,不再描述详细的数据,仅用示例说明。

某产品xx-直方图

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as plt

data = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]
x = range(0, 100, 2)

# 绘制直方图
plt.hist(data, x, rwidth=3, label='直方图', color='y')

plt.xlabel('X')
plt.ylabel('Y')
plt.title('直方图')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行代码后效果如下:

请在此添加图片描述

某产品xx-散点图

  • 那对应的代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
import matplotlib.pyplot as plt

data = [15, 33, 42, 50, 115, 20, 86, 66, 59, 43, 39, 50]
x = range(0, len(data))

# 绘制散点图
plt.scatter(x, data, label='散点图', s=15)

plt.xlabel('X')
plt.ylabel('Y')
plt.title('散点图')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.legend()
# plt.show()
plt.savefig("plot.jpg")
  • 运行代码后效果为:

请在此添加图片描述

某产品xx-饼图

  • 对应代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
subprocess.check_call([sys.executable, "-m", "pip", "install", "numpy"])
import matplotlib.pyplot as plt
import numpy as np

data = np.array([10, 20, 15, 15, 5, 5, 30])

plt.pie(data,
        labels=['P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7'],
        colors=["#8B008B", "#FF1493", "#4B0082", "#B0C4DE", "#E1FFFF", "#008080", "#00FF7F"],
        explode=(0, 0, 0.3, 0, 0, 0.2, 0), 
        autopct='%.2f%%',
        )
plt.title('饼图')
plt.rcParams['font.sans-serif'] = ['SimHei']
# plt.show()
plt.savefig("plot.jpg")
  • 运行代码效果为:

请在此添加图片描述

某产品xx-多图效果

  • 对应代码为:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
subprocess.check_call([sys.executable, "-m", "pip", "install", "numpy"])
import matplotlib.pyplot as plt
import numpy as np

x = np.array([10, 50])
y = np.array([10, 80])
plt.subplot(2, 2, 1)
plt.plot(x, y)
plt.title("图1")

x = np.array([10, 20, 30, 40])
y = np.array([10, 30, 50, 110])
plt.subplot(2, 2, 2)
plt.plot(x, y)
plt.title("图2")


x = np.array([10, 20, 30, 40])
y = np.array([50, 60, 70, 80])
plt.subplot(2, 2, 3)
plt.plot(x, y)
plt.title("图3")


x = np.array([20, 25, 30, 35])
y = np.array([40, 45, 50, 55])
plt.subplot(2, 2, 4)
plt.plot(x, y)
plt.title("图4")

plt.suptitle("多图显示")
plt.rcParams['font.sans-serif'] = ['SimHei']
#plt.show()
plt.savefig("plot.jpg")
  • 运行代码后的效果为:

请在此添加图片描述

总结

Python实现某产品全年销量数据多种样式可视化,主要是应用了python的matplotlib库进行绘制各种图表,除了以上的几种图表,还有柱状图、网格图等等。学习的时候建议使用真实的数据,可以真正达到分析问题的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/458286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ollama管理本地开源大模型,用Open WebUI访问Ollama接口

现在开源大模型一个接一个的,而且各个都说自己的性能非常厉害,但是对于我们这些使用者,用起来就比较尴尬了。因为一个模型一个调用的方式,先得下载模型,下完模型,写加载代码,麻烦得很。 对于程…

windows中如何将已安装的node.js版本进行更换

第一步:先清除已经安装好的node.js版本 1.按健winR弹出窗口,键盘输入cmd,然后敲回车(或者鼠标直接点击电脑桌面最左下角的win窗口图标弹出,输入cmd再点击回车键) 然后进入命令控制行窗口,并输入where node…

upload文件上传漏洞复现

什么是文件上传漏洞: 文件上传漏洞是指由于程序员在对用户文件上传部分的控制不足或者处理缺陷,而导致的用户可以越过其本身权限向服务器上上传可执行的动态脚本文件。这里上传的文件可以是木马,病毒,恶意脚本或者WebShell等。“…

lua制作flash钢琴

效果预览 apk使用manaluax打包,源码在文末提供。 应用体验下载地址:https://www.magicalapk.com/appview?id1705213059764 源码 布局代码 {LinearLayout;gravity"center";layout_height"fill";orientation"vertical";…

蓝桥杯--冶炼金属

目录 一、题目 二、解决代码 (1)版本一(报错:超时) 代码分析 (2)版本二(不会超时) 代码分析 (3)版本三(最终精简版)…

【数据分析】数据分析介绍

专栏文章索引:【数据分析】专栏文章索引 目录 一、介绍 二、生活中的数据分析 1.无处不在的数据 2.为什么要进行数据分析? 三、数据挖掘案例 1.案例分析 一、介绍 数据采集:数据采集是指从不同来源收集原始数据的过程,包括…

孙宇晨最新研判:加密货币将成为全球金融基础设施的一部分

近日,波场TRON创始人、火币HTX全球顾问委员会委员孙宇晨接受了在加密社区有重要影响力的媒体平台Bankless的专访,就自己的从业经历、涉足加密行业的理想、波场TRON本身的发展和未来的市场走向等话题进行了详细的分享。 孙宇晨认为,波场TRON的使命是为那些没有银行账户的人提供…

Ubuntu——以桌面应用为主的Linux发行版操作系统

目录 一、Ubuntu简介 二、Ubuntu下载及安装 1.Swap分区的作用 2.语言环境 3.软件管理——apt 3.1配置文件 3.2软件源配置文件格式 3.3DPKG常用命令 三、常用命令总结 1. date——显示或设定系统的日期和与时间 2.cal——显示日历 3.设置时区 4.修改密码——passwd…

学习使用js获取当前ip地址的方法,使用第三方API获取ip地址

学习使用js获取当前ip地址的方法,使用第三方API获取ip地址 使用 DNS 查询使用第三方 API 使用 DNS 查询 DNS 是一种用于解析主机名为 IP 地址的系统。可以使用 JavaScript DNS 查询来获取本机IP地址。下面是如何使用 JavaScript 进行DNS查询的示例代码。 <p class"loc…

【数学】【计算几何】1453. 圆形靶内的最大飞镖数量

作者推荐 视频算法专题 本文涉及知识点 数学 计算几何 LeetCoce:1453. 圆形靶内的最大飞镖数量 Alice 向一面非常大的墙上掷出 n 支飞镖。给你一个数组 darts &#xff0c;其中 darts[i] [xi, yi] 表示 Alice 掷出的第 i 支飞镖落在墙上的位置。 Bob 知道墙上所有 n 支飞…

CASIA-HWDB手写体数据集gnt生成为png格式

👑一、数据集获取 1.1 官方链接获取gnt文件 http://www.nlpr.ia.ac.cn/databases/download/feature_data/HWDB1.1trn_gnt.ziphttp://www.nlpr.ia.ac.cn/databases/download/feature_data/HWDB1.1tst_gnt.zip 1.2 百度网盘获取gnt文件 链接:https://pan.baidu.com/s/1pKa…

上位机图像处理和嵌入式模块部署(qmacvisual条件判断)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 之前我们在qmacvisual里面先创建项目&#xff0c;然后继续创建流程&#xff0c;这其实是一种顺序流程。更普遍的情况是&#xff0c;客户希望有些条…

Windows安装Kibana之保姆级教程

Kibana 安装 介绍&#xff1a;一款开源的数据分析和可视化平台&#xff0c;可对Elasticsearch 索引中的数据进行搜索、查看、交互操作&#xff1b;可理解为 Elasticsearch 的web管理后台 下载&#xff1a;点击https://www.elastic.co/cn/downloads/past-releases#kibana-->…

同城便民小程序源码系统 带完整的安装代码包以及搭建教程

同城便民小程序源码系统的开发&#xff0c;源于对市民生活需求的深入洞察。在日常生活中&#xff0c;人们经常需要查询各类便民信息&#xff0c;如房屋出租、二手交易、家政服务等。然而&#xff0c;传统的信息发布方式往往存在信息分散、查找困难等问题。因此&#xff0c;开发…

C# 线性搜索算法

线性搜索被定义为一种顺序搜索算法&#xff0c;从一端开始&#xff0c;遍历列表中的每个元素&#xff0c;直到找到所需的元素&#xff0c;否则搜索将继续&#xff0c;直到数据集的末尾。 线性搜索算法 线性搜索算法如何工作&#xff1f; 在线性搜索算法中&#xff1a; …

数字信封

一、概念 数字信封是将对称密钥通过非对称加密&#xff08;即&#xff1a;有公钥和私钥两个&#xff09;的结果分发对称密钥的方法。数字信封是实现信息保密性验证的技术。 二、过程描述 在数字信封中&#xff0c;信息发送方采用对称密钥来加密信息内容&#xff0c;然后将此…

YOLOv1预测阶段后处理----Non-maximum suppression(NMS非极大值抑制)

前言&#xff1a;预了解 NMS&#xff0c;去掉冗余的框。在目标检测中&#xff0c;不论是最初的region proposal&#xff0c;还是后来的anchor box&#xff0c;不可避免的一个问题就是对于同一个物体&#xff0c;会预测出多个bounding box&#xff0c;如下左图所示。而NMS所做的…

Java 使用 EasyExcel 实现导入导出(新手篇教程)

官网镇楼↓&#xff0c;觉得我写的不好的同学可以去官网看哦 EasyExcel Maven <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.3.3</version> </dependency> Excel 导入 示例&…

6、Design Script之列表

Range 在DesignScript中,Range是从起点到终点的一系列数字,使用指定的步距(间距类型),并有以下的初始化方法: start..end..step; start..end..#amount; start..end..~approximate; Range可以是数字的,也可以是字母的。 字母范围因大小写而异。 开始,结束. .#数量范围(…