数据分析-Pandas多维数据平行坐标可视化

数据分析-Pandas多维数据平行坐标可视化

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测NO_2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测NO_2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
​
plt.close("all")

在pandas数据分析中,了解观察多维数据的分布规律是非常重要的。各个维度数据的分布、度量通常用来直观描述数据集的分类位置,作为进一步探查分析的方向。

pandas的平行坐标系,是一种含有多个垂直平行坐标轴的统计图表。每个垂直坐标轴表示一个字段(维度),每个字段(维度)又用刻度来标明范围。这样,一个多维的数据可以很容易地在每一条轴上找到“落点”,从而连接起来,形成一条折线。随着数据增多,折线堆叠,分析者则有可能从中发现特性和规律。

平行坐标图画法

pandas画 平行坐标图方法最简单,只要一句语句搞定。相当于雷达图在一条直线上展开。

直接使用 Dataframe,parallel_coordinates函数即可。

from pandas.plotting import parallel_coordinates
​
data = pd.read_csv("data/iris.csv")
plt.figure();
parallel_coordinates(data, "Name");
​
plt.show()
plt.close("all")

首先可以用不同的颜色来标识不同的分组,那么关于属性与分组之间的关系,可以从图中获得哪些信息?

(1)折线走势“陡峭”与“低谷”只是表示在该属性上属性值的变化范围的大小,对于标签分类不具有决定意义,但是“陡峭“的属性上属性值间距较大,视觉上更容易区分出不同的标签类别

(2)标签的分类主要看相同颜色的折线是否集中,若在某个属性上相同颜色折线较为集中,不同颜色有一定的间距,则说明该属性对于预测标签类别有较大的帮助

(3)若某个属性上线条混乱,颜色混杂,则较大可能该属性对于标签类别判定没有价值

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/457889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【javaWeb】在webapp中手动发布一个应用

标题 🐲一、为什么要在webapp中手动发布一个应用🎉二、手动发布步骤1.下载Tomcat2.解压并安装3.在webapps中创建文档 ✨三、总结 🐲一、为什么要在webapp中手动发布一个应用 好处解释灵活性手动发布应用程序可以根据自己的需求进行自定义配置…

【大模型系列】图片生成(DDPM/VAE/StableDiffusion/ControlNet/LoRA)

文章目录 1 DDPM(UC Berkeley, 2020)1.1 如何使用DDPM生成图片1.2 如何训练网络1.3 模型原理 2 VAE:Auto-Encoding Variational Bayes(2022,Kingma)2.1 如何利用VAE进行图像增广2.2 如何训练VAE网络2.3 VAE原理2.3.1 Auto-Encoder2.3.2 VAE编码器2.3.3 VAE解码器 3 …

编程示例:约瑟夫环问题

编程示例:约瑟夫环问题 1约瑟夫环的故事 在浩瀚的计算机语言中,总有一些算法——虽然码量很少, 但却能完美又巧妙地解决那些复杂的问题。接下来, 我们要介绍的“约瑟夫环”问题就是一个很好的例子。 这个问题来源于犹…

基于uniapp的旅游景点入园预约系统 微信小程序0220o

技术要求: a) 操作系统:Windows、Linux等; b) 开发工具:Android Studio、pycharm等; c) 数据库:Oracle、MySQL等; d) 开发语言:python; e) 技术框架:采用MVC模…

GPT实战系列-如何让LangChain的Agent选择工具

GPT实战系列-如何让LangChain的Agent选择工具 LangChain GPT实战系列-LangChain如何构建基通义千问的多工具链 GPT实战系列-构建多参数的自定义LangChain工具 GPT实战系列-通过Basetool构建自定义LangChain工具方法 GPT实战系列-一种构建LangChain自定义Tool工具的简单方法…

PHP中的反序列化漏洞

PHP中的反序列化漏洞 目录 PHP 中的序列化与反序列化 概述 序列化 基本类型的序列化 对象的序列化 反序列化 示例序列化与反序列化 反序列化漏洞 - PHP 中的魔术方法 - Typecho_v1.0 中的反序列化漏洞 POP链的构造思路 pop链案例 反序列化逃逸 字符串逃逸&#xff…

Mac-自动操作 实现双击即可执行shell脚本

背景 在Mac上运行shell脚本,总是需要开启终端窗口执行,比较麻烦 方案 使用Mac上自带的“自动操作”程序,将shell脚本打包成可运行程序(.app后缀),实现双击打开即可执行shell脚本 实现细节 找到Mac上 应用程序中的 自动操作&am…

HTML案例-1.标签练习

效果 源码 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head&g…

三维高斯是什么

最近3DGS的爆火&#xff0c;引发了一众对三维高斯表达场景的研究。这里的三维高斯是什么&#xff1f;本文用简答的描述和简单实验来呈现三维高斯的数学意义。本文没有公式推导&#xff0c;主打一个意会。 我们高中都学过高斯分布&#xff0c;即一个钟形曲线。它的特点是有一个…

数字逻辑-时序逻辑电路二——沐雨先生

一、实验目的 &#xff08;1&#xff09;熟悉计数器的逻辑功能及特性。 &#xff08;2&#xff09;掌握计数器的应用。 &#xff08;3&#xff09;掌握时序逻辑电路的分析和设计方法。 二、实验仪器及材料 三、实验原理 1、集成4位计数器74LS161&#xff08;74LS160&#…

RSA加密与解密(Java实现)

RSA加密算法是一种非对称加密算法&#xff0c;它使用一对密钥来进行加密和解密操作。 基本原理 加密过程&#xff1a; 密钥生成&#xff1a;首先需要生成一对密钥&#xff0c;这对密钥包括一个公钥和一个私钥。公钥是公开的&#xff0c;可以分发给任何人&#xff0c;而私钥必须…

导入fetch_california_housing 加州房价数据集报错解决(HTTPError: HTTP Error 403: Forbidden)

报错 HTTPError Traceback (most recent call last) Cell In[3], line 52 from sklearn.datasets import fetch_california_housing3 from sklearn.model_selection import train_test_split ----> 5 X, Y fetch_california_housing(retu…

如何看待Figure公司与Open AI合作的最新机器人成果Figure 01?

想象一下&#xff0c;如果有一天&#xff0c;你走进办公室&#xff0c;迎面而来的不是熟悉的同事&#xff0c;而是一位名叫Figure 01的机器人新朋友。它不仅可以帮你倒咖啡&#xff0c;还能跟你聊天&#xff0c;甚至在你加班时给予精神上的支持。听起来是不是像科幻小说的情节&…

自动控制原理--matlab/simulink建模与仿真

第一讲 自动控制引论 第二讲 线性系统的数学模型 第三讲 控制系统的复域数学模型(传递函数) 第四讲 控制系统的方框图 /video/BV1L7411a7uL/?p35&spm_id_frompageDriver pandas, csv数据处理 numpy&#xff0c;多维数组的处理 Tensor&#xff0c;PyTorch张量 工作原理图…

【Linux】Ubuntu使用Netplan配置静态/动态IP

1、说明 Ubuntu 18.04开始,Ubuntu和Debian移除了以前的ifup/ifdown命令和/etc/network/interfaces配置文件,转而使用ip link set或者/etc/netplan/01-netcfg.yaml模板和sudo netplan apply命令实现网络管理。 Netplan 是抽象网络配置描述器,用于配置Linux网络。 通过netpla…

提升零售行业竞争力的信息抽取技术应用与实践

一、引言 在当今快速发展的零售行业中&#xff0c;沃尔玛、家乐福等大型连锁超市为消费者提供了丰富的日常食品和日用品。为了进一步提升客户体验和优化库存管理&#xff0c;这些零售巨头纷纷开始探索和应用先进的信息抽取技术。 本文将深入探讨一个成功的信息抽取项目&#…

基于word2vec 和 fast-pytorch-kmeans 的文本聚类实现,利用GPU加速提高聚类速度

文章目录 简介GPU加速 代码实现kmeans聚类结果kmeans 绘图函数相关资料参考 简介 本文使用text2vec模型&#xff0c;把文本转成向量。使用text2vec提供的训练好的模型权重进行文本编码&#xff0c;不重新训练word2vec模型。 直接用训练好的模型权重&#xff0c;方便又快捷 完整…

19C 19.22 RAC 2节点一键安装演示

Oracle 一键安装脚本&#xff0c;演示 2 节点 RAC 一键安装过程&#xff08;全程无需人工干预&#xff09;&#xff1a;&#xff08;脚本包括 GRID/ORALCE PSU/OJVM 补丁自动安装&#xff09; ⭐️ 脚本下载地址&#xff1a;Shell脚本安装Oracle数据库 脚本第三代支持 N 节点…

CompletableFuture原理与实践-外卖商家端API的异步化

背景 随着订单量的持续上升&#xff0c;美团外卖各系统服务面临的压力也越来越大。作为外卖链路的核心环节&#xff0c;商家端提供了商家接单、配送等一系列核心功能&#xff0c;业务对系统吞吐量的要求也越来越高。而商家端API服务是流量入口&#xff0c;所有商家端流量都会由…

畅捷通T+ Ufida.T.DI.UIP.RRA.RRATableController 反序列化RCE漏洞复现

0x01 产品简介 畅捷通 T+ 是一款灵动,智慧,时尚的基于互联网时代开发的管理软件,主要针对中小型工贸与商贸企业,尤其适合有异地多组织机构(多工厂,多仓库,多办事处,多经销商)的企业,涵盖了财务,业务,生产等领域的应用,产品应用功能包括:采购管理、库存管理、销售…