GPT实战系列-如何让LangChain的Agent选择工具

GPT实战系列-如何让LangChain的Agent选择工具

LangChain

GPT实战系列-LangChain如何构建基通义千问的多工具链

GPT实战系列-构建多参数的自定义LangChain工具

GPT实战系列-通过Basetool构建自定义LangChain工具方法

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

GPT实战系列-搭建LangChain流程简单应用

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-简单聊聊LangChain

大模型查询工具助手之股票免费查询接口

随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。

如何管理这些模块呢?

LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。

在这里插入图片描述

对于任何用户输入,当知道工具使用的具体顺序时,Chain就很好。但是对于某些情况,使用哪些工具,调用多少次取决于用户输入。在这些情况下,我们就希望让模型决定使用工具的次数和顺序。这就是Agent。

LangChain自带了许多内置的Agent,这些Agent针对 不同情况,类型。

举个例子,如果尝试一下 OpenAI 工具代理,它利用新的 OpenAI 工具调用 API。

设置环境变量

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

定义Tools

同前篇所示,为了让Agent可以选,实现三个自定义工具 Tools,首先需要做一些配置初始化的工作,导入langchain相关的包。

from langchain_core.tools import tool

@tool
def multiply(first_int: int, second_int: int) -> int:
    """Multiply two integers together."""
    return first_int * second_int

@tool
def add(first_int: int, second_int: int) -> int:
    "Add two integers."
    return first_int + second_int

@tool
def exponentiate(base: int, exponent: int) -> int:
    "Exponentiate the base to the exponent power."
    return base**exponent

tools = [multiply, add, exponentiate]

构建Prompt

实现代码,创建Prompt模版,配置大模型,以及输出解析函数。

from langchain import hub
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_openai import ChatOpenAI

prompt = hub.pull("hwchase17/openai-tools-agent")

创建并调用Agent

把各碎片链接起来,建立Agent,

#引用OpenAI模型,创建代理
model = ChatOpenAI(model="gpt-3.5-turbo-1106", temperature=0)

agent = create_openai_tools_agent(model, tools, prompt)

# 执行
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke(
    {
        "input": "Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result"
    }
)

输出结果:

> Entering new AgentExecutor chain...
Invoking: `exponentiate` with `{'base': 3, 'exponent': 5}`
243

Invoking: `add` with `{'first_int': 12, 'second_int': 3}`
15

Invoking: `multiply` with `{'first_int': 243, 'second_int': 15}`
3645

Invoking: `exponentiate` with `{'base': 3645, 'exponent': 2}`
13286025The result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.

> Finished chain.

{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',
 'output': 'The result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.'}

是不是很有趣?

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客

GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客

GPT实战系列-大话LLM大模型训练-CSDN博客

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/457881.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PHP中的反序列化漏洞

PHP中的反序列化漏洞 目录 PHP 中的序列化与反序列化 概述 序列化 基本类型的序列化 对象的序列化 反序列化 示例序列化与反序列化 反序列化漏洞 - PHP 中的魔术方法 - Typecho_v1.0 中的反序列化漏洞 POP链的构造思路 pop链案例 反序列化逃逸 字符串逃逸&#xff…

Mac-自动操作 实现双击即可执行shell脚本

背景 在Mac上运行shell脚本,总是需要开启终端窗口执行,比较麻烦 方案 使用Mac上自带的“自动操作”程序,将shell脚本打包成可运行程序(.app后缀),实现双击打开即可执行shell脚本 实现细节 找到Mac上 应用程序中的 自动操作&am…

HTML案例-1.标签练习

效果 源码 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head&g…

三维高斯是什么

最近3DGS的爆火&#xff0c;引发了一众对三维高斯表达场景的研究。这里的三维高斯是什么&#xff1f;本文用简答的描述和简单实验来呈现三维高斯的数学意义。本文没有公式推导&#xff0c;主打一个意会。 我们高中都学过高斯分布&#xff0c;即一个钟形曲线。它的特点是有一个…

数字逻辑-时序逻辑电路二——沐雨先生

一、实验目的 &#xff08;1&#xff09;熟悉计数器的逻辑功能及特性。 &#xff08;2&#xff09;掌握计数器的应用。 &#xff08;3&#xff09;掌握时序逻辑电路的分析和设计方法。 二、实验仪器及材料 三、实验原理 1、集成4位计数器74LS161&#xff08;74LS160&#…

RSA加密与解密(Java实现)

RSA加密算法是一种非对称加密算法&#xff0c;它使用一对密钥来进行加密和解密操作。 基本原理 加密过程&#xff1a; 密钥生成&#xff1a;首先需要生成一对密钥&#xff0c;这对密钥包括一个公钥和一个私钥。公钥是公开的&#xff0c;可以分发给任何人&#xff0c;而私钥必须…

导入fetch_california_housing 加州房价数据集报错解决(HTTPError: HTTP Error 403: Forbidden)

报错 HTTPError Traceback (most recent call last) Cell In[3], line 52 from sklearn.datasets import fetch_california_housing3 from sklearn.model_selection import train_test_split ----> 5 X, Y fetch_california_housing(retu…

如何看待Figure公司与Open AI合作的最新机器人成果Figure 01?

想象一下&#xff0c;如果有一天&#xff0c;你走进办公室&#xff0c;迎面而来的不是熟悉的同事&#xff0c;而是一位名叫Figure 01的机器人新朋友。它不仅可以帮你倒咖啡&#xff0c;还能跟你聊天&#xff0c;甚至在你加班时给予精神上的支持。听起来是不是像科幻小说的情节&…

自动控制原理--matlab/simulink建模与仿真

第一讲 自动控制引论 第二讲 线性系统的数学模型 第三讲 控制系统的复域数学模型(传递函数) 第四讲 控制系统的方框图 /video/BV1L7411a7uL/?p35&spm_id_frompageDriver pandas, csv数据处理 numpy&#xff0c;多维数组的处理 Tensor&#xff0c;PyTorch张量 工作原理图…

【Linux】Ubuntu使用Netplan配置静态/动态IP

1、说明 Ubuntu 18.04开始,Ubuntu和Debian移除了以前的ifup/ifdown命令和/etc/network/interfaces配置文件,转而使用ip link set或者/etc/netplan/01-netcfg.yaml模板和sudo netplan apply命令实现网络管理。 Netplan 是抽象网络配置描述器,用于配置Linux网络。 通过netpla…

提升零售行业竞争力的信息抽取技术应用与实践

一、引言 在当今快速发展的零售行业中&#xff0c;沃尔玛、家乐福等大型连锁超市为消费者提供了丰富的日常食品和日用品。为了进一步提升客户体验和优化库存管理&#xff0c;这些零售巨头纷纷开始探索和应用先进的信息抽取技术。 本文将深入探讨一个成功的信息抽取项目&#…

基于word2vec 和 fast-pytorch-kmeans 的文本聚类实现,利用GPU加速提高聚类速度

文章目录 简介GPU加速 代码实现kmeans聚类结果kmeans 绘图函数相关资料参考 简介 本文使用text2vec模型&#xff0c;把文本转成向量。使用text2vec提供的训练好的模型权重进行文本编码&#xff0c;不重新训练word2vec模型。 直接用训练好的模型权重&#xff0c;方便又快捷 完整…

19C 19.22 RAC 2节点一键安装演示

Oracle 一键安装脚本&#xff0c;演示 2 节点 RAC 一键安装过程&#xff08;全程无需人工干预&#xff09;&#xff1a;&#xff08;脚本包括 GRID/ORALCE PSU/OJVM 补丁自动安装&#xff09; ⭐️ 脚本下载地址&#xff1a;Shell脚本安装Oracle数据库 脚本第三代支持 N 节点…

CompletableFuture原理与实践-外卖商家端API的异步化

背景 随着订单量的持续上升&#xff0c;美团外卖各系统服务面临的压力也越来越大。作为外卖链路的核心环节&#xff0c;商家端提供了商家接单、配送等一系列核心功能&#xff0c;业务对系统吞吐量的要求也越来越高。而商家端API服务是流量入口&#xff0c;所有商家端流量都会由…

畅捷通T+ Ufida.T.DI.UIP.RRA.RRATableController 反序列化RCE漏洞复现

0x01 产品简介 畅捷通 T+ 是一款灵动,智慧,时尚的基于互联网时代开发的管理软件,主要针对中小型工贸与商贸企业,尤其适合有异地多组织机构(多工厂,多仓库,多办事处,多经销商)的企业,涵盖了财务,业务,生产等领域的应用,产品应用功能包括:采购管理、库存管理、销售…

Python基于大数据的豆瓣电影分析,豆瓣电影可视化系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

linux 安装gradle7.4.2环境

1.下载gradle7.4.2工程 百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固&#xff0c;支持教育网加速&#xff0c;支持手机端。注册使用百度网盘即可享受免费存储空间https://pan.baidu.com/s/1hoNEFkBJPHAgs9ITAEh3Zg?pwdGJ…

活动图高阶讲解-03

1 00:00:00,000 --> 00:00:06,260 刚才我们讲了活动图的历史 2 00:00:06,260 --> 00:00:11,460 那我们来看这个活动图 3 00:00:11,460 --> 00:00:15,260 如果用来建模的话怎么用 4 00:00:15,260 --> 00:00:20,100 按照我们前面讲的软件方法的工作流 5 00:00:20…

mysql的语法总结3

查询表 精确查找 举例 去除重复行 假设您有一个名为 students 的表&#xff0c;其中包含 name 和 age 两列&#xff0c;您想要查询所有不重复的年龄&#xff0c;可以使用以下查询&#xff1a; 详细匹配 查询emp表中在部门10工作、工资高于1000或岗位是CLERK的所有雇员的姓名、…

C++ 优先级队列(大小根堆)OJ

目录 1、 1046. 最后一块石头的重量 2、 703. 数据流中的第 K 大元素 为什么小根堆可以解决TopK问题&#xff1f; 3、 692. 前K个高频单词 4、 295. 数据流的中位数 1、 1046. 最后一块石头的重量 思路&#xff1a;根据示例发现可以用大根堆(降序)模拟这个过程。 class So…