康奈尔开源近10万份审稿意见,未来论文发表或将由AI定夺

大语言模型(LLMs)的进步为自动化论文评审开辟了新途径,这些模型在学术反馈领域展现出巨大潜力。自动化评审的核心优势在于其能够精准指出论文草稿的不足之处,助力作者优化研究。尽管已有丰富的同行评审数据,但现有自动化评审系统仍面临挑战,如评审内容缺乏细节和无法涵盖多样化观点。

本文提出REVIEWER2,一个创新的两阶段评审生成框架,它通过明确建模评审内容的分布,生成更详尽的评审内容,全面覆盖人类评审者关注的细节。研究团队构建了一个包含27,000多篇论文和99,000多条评审的大规模数据集,并进行了特征提示的注释,以支持后续研究。

自动化评审虽前景广阔,但挑战亦不少。评审的特异性问题,即不同评审者关注点的差异,对自动化系统构成挑战。同时,确保评审内容具体又有建设性,并提供改进建议,是系统亟需解决的问题。本文的实验表明,REVIEWER2通过特征提示提高评审的质量和覆盖范围,克服了标准微调方法的局限性。

论文标题: REVIEWER2: Optimizing Review Generation Through Prompt Generation

论文链接: https://arxiv.org/pdf/2402.10886.pdf

REVIEWER2框架介绍:一种新颖的两阶段论文评审生成方法

REVIEWER2是一种创新的两阶段论文评审生成框架,旨在解决现有自动化评审生成方法中的缺陷,如缺乏细节和覆盖范围有限的问题。这一框架通过显式建模可能涉及的评审特征的分布,生成更详细的评审,更好地覆盖人类评审员在草稿中识别的特征。

1. 第一阶段:利用大语言模型生成评审要点提示

在REVIEWER2的第一阶段,一个经过微调的大语言模型(LLM)分析论文并产生一组应该关注的评审特征。这些特征以提示的形式出现,作为第二阶段的输入。

图片

2. 第二阶段:基于论文内容和提示生成详细评审

第二阶段的LLM根据论文内容和第一阶段生成的特征提示,生成详细的评审。这种两阶段方法不仅提供了对评审特征覆盖范围的明确控制,而且避免了单阶段生成方法中产生通用评审的倾向。

图片

数据集构建:开发PGE管道注入评审要点

为了训练REVIEWER2,需要一个包含论文和评审的数据集,并且这些评审需要用特征提示进行增强。现有的评审数据集不包含特征提示,因此我们开发了一种名为Prompt Generation with Evaluation (PGE)的新方法来生成高质量的特征提示,并构建了一个大规模的评审数据集。

1. 数据集统计:涵盖27,000多篇论文和99,000多条评审

我们生成了一个大规模的评审数据集,包含27,000多篇论文和99,000多条评审(下表)。这些数据来自不同年份、不同会议和不同学科的论文和评审。

图片

2. PGE方法:生成步骤与评估步骤详解

PGE方法包含生成步骤和评估步骤(下图)。在生成步骤中,给定一组论文和相应的参考评审,PGE为每条评审生成一个提示。在评估步骤中,生成的提示根据5分制进行评分。如果提示获得满分,则将其与相应的评审一起存储在数据集中;否则,提示将被重新生成。这种迭代方法解决了评审缺乏真实提示的问题,并在没有人工监督的情况下确保了提示生成的质量。

图片

通过PGE方法,我们构建了一个包含特征提示的大规模评审数据集,这是首个此类数据集,并将其作为未来研究的资源公开。

实验分析的维度:评估REVIEWER2的评审质量、特异性和覆盖度

1. 质量分析:使用BLEU、ROUGE和BertScore指标

为了评估REVIEWER2生成的评审质量,我们采用了三种评价指标:BLEU、ROUGE和BertScore。BLEU和ROUGE指标通过比较生成评审与参考评审之间的n-gram重叠来评估文本的相似性,而BertScore则通过比较生成评审与参考评审在嵌入空间的语义相似性来进行评价。这些指标共同为我们提供了一个全面的质量评估框架。

2. 特异性分析:基于BertScore的评审特异性度量

特异性分析旨在评估REVIEWER2生成的评审是否具有针对性,即评审是否能够识别并针对论文的特定特征进行评价。我们通过计算生成评审与不同论文的参考评审之间的BertScore下降幅度来衡量特异性。如果生成的评审具有高特异性,那么与其他论文的参考评审配对时,BertScore的下降幅度将会较大;反之,如果评审内容较为通用,则下降幅度较小。

3. 控制性分析:REVIEWER2对提示的响应性评估

控制性分析的目的是评估REVIEWER2在接收到特定的提示后,生成的评审是否能够覆盖所需的特征。通过比较REVIEWER2在接收到不同提示时生成的评审之间的相似性,我们可以评估其在不同提示下的多样性。理想情况下,REVIEWER2应能够根据不同的提示生成覆盖不同特征的评审。

4. 覆盖性分析:REVIEWER2对完全再现人类评审的覆盖率评估

覆盖性分析将评估作者能否通过选择特征提示实现良好的覆盖,也就是REVIEWER2能否完全再现人类评审。因此,在这里定义了一个覆盖率的概念。

实验数据解读:REVIEWER2在多个维度上优于现有方法

1. 质量对比:REVIEWER2与其他方法的性能比较

在质量对比方面,REVIEWER2在BLEU、ROUGE和BertScore指标上均优于现有的评审生成方法(下表)。这表明REVIEWER2能够生成与人类评审更为相似的评审内容,无论是在语法结构还是语义内容上,都能更好地匹配参考评审。

图片

上表中,R2:REVIEWER2;R2-E:REVIEWER2-E(采用交叉熵提取方法从论文中提取一组不同的句子来代表论文的内容);SS:SINGLES(对单级模型进行微调,以便直接从论文的完整上下文中生成评论,而无需特征提示);SS-E:SINGLES-E(此变体包括微调单一模型,以便仅从论文提取的摘要中生成评论);SS-E0:SINGLES-E0(这种 "0-shot "方法可促使 LLM 直接从提取的上下文中生成评论,而无需特征提示)

2. 特异性对比:REVIEWER2生成评审的针对性

在特异性分析中,REVIEWER2生成的评审显示出较高的特异性,这意味着其评审内容具有较强的针对性,能够准确地识别并评价论文的特定特征。下图是四种评审方式在6个不同数据集中2000个步骤的特异性图。

图片

3. 控制性对比:REVIEWER2生成评审的多样性

下表中,两种方式的平均值比较接近,但REVIEWER2在所有六个数据集的最大相似度较高,说明REVIEWER2能够持续生成与其中一个参考资料非常接近的评审。这证明REVIEWER2能对特征提示做出反应,并能覆盖所需的特征。这种方式能够根据不同的提示生成多样化的评审,这进一步证明了其在生成评审时具有较好的控制性。

图片

4. 覆盖性对比:REVIEWER2生成评审的接近性

结果如下表所示。如果完全再现人类评论,则意味着覆盖率值为0。表中REVIEWER2的值明显比R2-E的小,这表明它能有效地针对给定论文的不同提示生成量身定制的回复,也表明了使用完整上下文的重要性。

图片

讨论与限制:REVIEWER2的潜力、挑战和未来方向

输入不一致性与域知识限制

REVIEWER2的开发旨在通过自动化的方式生成论文评审,以揭示当前草稿的薄弱环节。然而,这一过程面临着输入不一致性的挑战。例如,REVIEWER2的输入包括人类编写的评审和论文本身,而其前置流程PGE仅以人类编写的评审为输入。这种输入的差异性可能导致生成的提示与评审生成流程的有效对齐受限。此外,由于Llama-2-70B-Chat(本实验所用的大语言模型)的上下文长度限制,REVIEWER2无法直接处理整篇论文,这可能影响评审的质量和具体性。

另一个挑战是域知识的限制。REVIEWER2依赖于预训练的语料库来生成评审,这可能导致对于需要深入领域知识的论文无法产生准确的评审。未来的研究可以探索通过对论文语料库进行第二阶段的预训练或领域适应来提高评审的准确性。

自动化评审的伦理考量

自动化评审系统如REVIEWER2在提供论文反馈方面具有潜力,但同时也引发了伦理问题。自动化评审不应被视为替代人类评审员的工具,而是作为辅助工具,帮助作者改进工作,并为人类评审员提供指导。自动化评审的结果不应被误解为对论文的最终和权威评价。在使用数据集时,研究人员必须遵循既定的目的,并确保遵守开放许可协议,同时排除个人元数据和评审员身份信息,以保护个人隐私。

总结:REVIEWER2对自动化论文评审的贡献与未来展望

REVIEWER2作为一种自动化论文评审工具,通过引入特征提示(aspect prompts)来生成更具体性和覆盖范围的评审。它的开发旨在帮助作者在正式同行评审前提高工作质量,从而减轻同行评审过程的压力。REVIEWER2的贡献在于其两阶段评审生成框架,以及它为未来研究提供的大规模带有特征提示的评审数据集。

尽管REVIEWER2在提高评审质量、具体性和可控性方面表现出潜力,但它仍面临输入不一致性、域知识限制和伦理问题等挑战。未来的研究可以探索整合提示生成和评审生成过程,提高生成提示的有效性,并通过领域适应或二阶段预训练来增强模型的领域知识。此外,随着技术的进步,如GPT-4的出现,未来的工作可能会探索使用更长的上下文长度来提高评审的质量,同时考虑成本效益。

REVIEWER2及其生成的数据集为自动化论文评审领域提供了一个有价值的起点,为未来的研究和发展奠定了基础。随着技术的不断进步和伦理问题的深入讨论,自动化论文评审有望成为科研写作和出版流程中的一个重要辅助工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/446345.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Leetcode每日一题】 位运算 - 位1的个数(难度⭐)(32)

1. 题目解析 题目链接:191. 位1的个数 这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。 核心在于计算题目所给32位二进制数1的个数返回即可。 2.算法原理 位运算特性:通过位运算,特别是按位与(&…

Ollama--本地大语言模型LLM运行专家

文章目录 1、问题提出2、解决方案3、Ollama介绍3.1、Ollama的核心功能3.2、Ollama的独特之处 4、Ollama安装与使用4.1、Ollama的安装 5、使用Docker6、模型库和自定义模型7、应用场景展望8、结语 1、问题提出 使用chatgpt之类的闭源大语言模型时,我们与ai沟通的数据…

大数据时代的数据保护:分布式存储系统的七大原则

第一原则:“灾”和“备”,区分容灾切换与数据备份的区别 管理对象 管理对象 防什么? 底层逻辑 核心评价指标 容灾切换 IT环境与业 物理灾难 …

数学建模-敏感度分析(美赛)

从多个不确定性因素中逐一找出对投资项目经济效益指标有重要影响的敏感性因素,并分析、测算其对项目经济效益指标的影响程度和敏感性程度,进而判断项目承受风险的能力。若某参数的小幅度变化能导致经济效益指标的较大变化,则称此参数为敏感性…

代码随想录刷题笔记 DAY 42 | 最后一块石头的重量 II No.1049 | 目标和 No.494 | 一和零 No.474

文章目录 Day 4301. 最后一块石头的重量 II&#xff08;No. 1049&#xff09;<1> 题目<2> 笔记<3> 代码 02. 目标和&#xff08;No. 494&#xff09;<1> 题目<2> 笔记<3> 代码 03. 一和零&#xff08;No. 474&#xff09;<1> 题目&l…

最顶级的Unity团队都在使用的技巧!!!

作为该系列的第二篇文章&#xff0c;今天将给大家分享一下&#xff0c;Unity最资深的团队是如何设置物理、UI和音频的。希望可以帮助大家最大限度的使用Unity引擎。 第一篇给大家介绍了如何提高资源、项目配置和图形的性能&#xff0c;感兴趣的朋友千万不要错过了。 文章链接…

css-vxe-form-item中输入框加自定义按钮(校验位置错误)

1.浮动错误效果 提示内容不对 2.不使用浮动&#xff0c;使用行内块元素 代码如下 <vxe-form-item title"yoyo:" field"assembleWorkNo" span"8"><template #default><vxe-input style"width:70%;display:inline-block;&quo…

1572.矩阵对角线元素的和

刷算法题&#xff1a; 第一遍&#xff1a;1.看5分钟&#xff0c;没思路看题解 2.通过题解改进自己的解法&#xff0c;并且要写每行的注释以及自己的思路。 3.思考自己做到了题解的哪一步&#xff0c;下次怎么才能做对(总结方法) 4.整理到自己的自媒体平台。 5.再刷重复的类…

单文件组件SFC及Vue CLI脚手架的安装使用

单文件组件SFC及Vue CLI脚手架的安装使用 Vue 单文件组件&#xff08;又名 *.vue 文件&#xff0c;缩写为 SFC&#xff09;是一种特殊的文件格式&#xff0c;它允许将 Vue 组件的模板、逻辑 与 样式封装在单个文件中。 为什么要使用 SFC 使用 SFC 必须使用构建工具&#xff…

【顶刊|修正】多区域综合能源系统热网建模及系统运行优化【复现+延伸】

目录 主要内容 部分代码 结果一览 下载链接 主要内容 该程序复现《多区域综合能源系统热网建模及系统运行优化》模型并进一步延伸&#xff0c;基于传热学的基本原理建立了区域热网能量传输通用模型&#xff0c;对热网热损方程线性化实现热网能量流建模&#xff0…

[OpenWrt 22.03] ttylogin添加登录密码与禁止登录的配置

ttylogin 的使用 Openwrt 串口默认是没有密码的。Openwrt启动后,一个默认的密码将被启用去保护ssh登录和页面(http)登录,而串口登录密码却是空缺的。 对于 Openwrt,当内核初始化后,就会启动第一个进程 init,init进程会进行一系列的系统初始化工作,然后会读取 /etc/in…

总结:Spring创建Bean循环依赖问题与@Lazy注解使用详解

总结&#xff1a;Spring创建Bean循环依赖问题与Lazy注解使用详解 一前提知识储备&#xff1a;1.Spring Bean生命周期机制&#xff08;IOC&#xff09;2.Spring依赖注入机制&#xff08;DI&#xff09;&#xff08;1&#xff09;Autowired注解标注属性set方法注入&#xff08;2&…

力扣530. 二叉搜索树的最小绝对差

思路1&#xff1a;中序遍历&#xff0c;递归排序成有序数组&#xff1b;因为是有序&#xff0c;只需要求相邻两个值的最小差值。 class Solution {ArrayList <Integer> list new ArrayList();int ans 100001;//题目最大 100000public int getMinimumDifference(TreeNo…

[QT]自定义的QtabWidget

需求 最近有一个需求就是一个QTabWidget要求有四个tab页在左侧用于显示主页面&#xff0c;在右侧有一个关于按钮&#xff0c;点击后用于弹出窗口显示一些程序相关信息。主要是怎么实现右侧按钮 相关代码 #ifndef MYTABWIDGET_H #define MYTABWIDGET_H#include <QWidget&g…

docker学习(十四)docker搭建私服

docker私服搭建&#xff0c;配置域名访问&#xff0c;设置访问密码 启动registry docker run -d \-p 5000:5000 \-v /opt/data/registry:/var/lib/registry \registrydocker pull hello-world docker tag hello-world 127.0.0.1:5000/hello-world docker push 127.0.0.1:5000…

金融数据采集与风险管理:Open-Spider工具的应用与实践

一、项目介绍 在当今快速发展的金融行业中&#xff0c;新的金融产品和服务层出不穷&#xff0c;为银行业务带来了巨大的机遇和挑战。为了帮助银行员工更好地应对这些挑战&#xff0c;我们曾成功实施了一个创新的项目&#xff0c;该项目采用了先进的爬虫技术&#xff0c;通过ope…

安全测试报告-模板内容

1. 概述 为检验XXXX平台 系统的安全性&#xff0c;于 XXXX年 XX 月 XX 日至 XXXX年 XX 月 XX日对目标系统进行了安全测试。在此期间测试人员将使用各 种非破坏性质的攻击手段&#xff0c;对目标系统做深入的探测分析&#xff0c;进而挖掘系统中的安 全漏洞和风险隐患。研发团队…

《互联网的世界》第五讲-信任和安全(第一趴:物理世界的非对称加密装置)

信任和安全的话题过于庞大&#xff0c;涉及很多数学知识&#xff0c;直接涉及 “正事” 反而不利于理解问题的本质&#xff0c;因此需要先讲一个前置作为 part 1。 part 1 主要描述物理世界的信任和安全&#xff0c;千万不要觉得数字世界是脱离物理世界的另一天堂&#xff0c;…

Vue 3中的ref:响应式变量的强大工具

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

HIVE伪分布安装

引言 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,类似于RDBMS(关系型数据库,如MySQL、Oracle、PgSQL),并提供类SQL的查询功能。 实验准备 1.搭建好伪分布安装模式的Hadoop的虚拟机,并配置了Linux网络。(可看我前面发布的文章) 2.apache…