蓝桥杯递推与递归法|斐波那契数列|数字三角形|42点问题|数的计算|数的划分(C++)

递归是用来做dfs,是搜索算法的基础
递推是用来做dp部分,及部分其他算法,复杂度较低,不会出现爆栈问题

递推法:

递推法是一种在数学和其他领域广泛应用的重要方法,它在计算机科学中被用作一种关键的数值求解算法。

递推算法的特点

递推法的核心在于找到递推关系式。这种方法可以将复杂的计算过程转化为简单的重复步骤,充分利用计算机在运行程序时的时间局部性和空间局部性。

递推算法的思想:
  1. 首先找到各个相邻数据项之间的递推关系;
  2. 递推关系避开了求通项公式的麻烦,尤其是对于那些难以或无法求解通项公式的题目;
  3. 将复杂问题分解为若干步骤的简单运算;
  4. 一般来说,递推算法可以视为一种特殊的迭代算法。
递推算法解题的基本思路:
  1. 将复杂计算转换为简单重复运算;
  2. 通过找到递推关系式进行简化运算;
  3. 利用计算机的特性,减少运行时间。
递推算法的一般步骤:
  1. 根据题目确定数据项,并找到符合要求的递推关系式;
  2. 根据递推关系式设计递推程序;
  3. 根据题目找到递推的终点;
  4. 单次查询可以不进行存储,多次查询都要进行存储;
  5. 按要求输出答案即可。

递归法

递归算法:

递归算法是一种自顶向下的算法,它通过不断地直接或间接调用自身的函数,通过每次改变变量完成多个过程的重复计算,直到到达边界之后,结束调用。
与递推法相似的是,递归与递推都是将一个复杂过程分解为几个简单重复步骤进行计算。
递归算法的实现的核心是分治策略,即分而治之,将复杂过程分解为规模较小的同类问题,通过解决若干个小问题,进而解决整个复杂问题。

递归算法的思想:
  1. 将复杂计算过程转换为简单重复子过程;
  2. 找到递归公式,即能够将大问题转化为小问题的公式;
  3. 自上而下计算,在返回完成递归过程。
递归算法设计的一般步骤:
  1. 根据题目设计递归函数中的运算部分;
  2. 根据题目找到递归公式,题目可能会隐含给出,也可能需要自己进行推导;
  3. 找到递归出口,即递归的终止条件。

递归法和递推法的思路已经给大家讲解得差不多了,接下来我们将结合真实的大赛题目进行讲解。这将有助于我们更好地理解和应用这两种方法。

1. 斐波纳契数列 fibonacci 问题

在一定情况下,同一个问题可以使用用递归也可以使用递推解答。一般一个问题的递推关系和递归关系都好求的话就都可以解题。
当然如果题目只有一个关系好求,那就最好采用关系好求的办法。
题目描述:
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。

指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、…

在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N^*)

请求出该数列中第n个数字(n从1开始计数)是多少。

样例:

输入样例
样例1输入
6
样例2输入
4
输出样例
样例1输出
8
样例2输出
3

对于上面的样例我们进行了如下计算;

[0]=0
[1]=1
[2]=0+1
[3]=1+1=2
[4]=1+2=3
[5]=2+3=5
[6]=5+3=8

运行限制:

1. 最大运行时间:1s
2. 最大运行内存:128M

题目解析:

  • 这个题给出递推式 F(n) = F(n-1) + F(n-2)
  • 转化为可用的递推关系,即F(n) + F(n+1) = F(n+2)
    这一通过从n=1开始循环即可完成递推,当然也可以使用递归法。

首先我们写找出递归式,F(n)= F(n-1) + F(n-2)

F(n)= F(n-1) + F(n-2)
    = F(n-2)+F(n-3)+F(n-3)+F(n-4)
//重复调用

这样我们找到了递归式,然后我们应该找到递归出口。
我们可以知道 F(n)=0 n=0 ,F(n)=1 n=1这就是递归出口,能让递归停止的条件。
递归算法的通用框架如下:

do(a,b,c...)
{
    //递归终止条件,即出口
    if(a==? ,b==? ,....) return

    //递归条件
    if(条件1)
        do(参数1)

    else(条件2)
        do(参数2)

}

如本题,各子式间存在计算关系,可以化为:

do(a)
{
    if(a==0) return 0;
    if(a==1) return 1;

    return do(a-1)+do(a-2);
}

这道题不是多次询问问题,不需要存储直接计算的复杂度是最低的。

答案解析

C++ 代码:

  • 递推算法代码
#include <iostream>
using namespace std;

int main()
{
    int n; //第几个数
    int x=0; //F(n)
    int y=1; //F(n+1)
    int ans; //F(n+2)

    cin>>n;

    if(n==0) ans=0;
    else if(n==1) ans=1;
    else {
        for(int i=2;i<=n;i++)
        {
            ans=x+y;
            x=y;
            y=ans;
        }
    }
    cout<<ans<<endl;

}
  • 递归算法代码

#include <iostream>
using namespace std;

int fn(int n)
{
    //递归出口1
    if(n==0)
        return 0;

    //递归出口2
    else if(n==1 )
        return 1;

    else
        return fn(n-1)+fn(n-2); //递归关系式
}


int main()
{

    int n; //第几个数
    int ans;

    cin>>n;

    ans=fn(n);

    cout<<ans<<endl;

}
改进:记忆化

递归过程中做了重复工作,例如fib(3)计算了两次,其实只算1次就够了
为避免递归时重复计算,可以在子问题得到解决时,就保存结果,再次需要这个结果时,直接返回保存的结果就行了,不继续递归下去
这种存储已经解决的子问题结果的技术称为记忆化
记忆化是递归的常用优化技术
动态规划也常常使用递归写代码,记忆化也是动态规划的关键技术

#include <bits/stdc++.h>
using namespace std;

int cnt = 0;    //统计执行了多少次递归
int data[25];   //存储斐波那契数
int fib (int n)
{
	cnt++;
	if (data[n] != 0)   //记忆化搜索,已经算过,不用再算,直接返回结果
		return data[n];
	if (n == 1 || n == 2)
	{
		data[n] = 1;
		return data[n];
	}
	data[n] = fib(n - 1) + fib(n - 2);   //继续递归
	return data[n];
}
int main()
{
	cout << fib(20);         //计算递20个斐波那契数
	cout << " cnt=" << cnt;  //递归了cnt = 37次
}
存储型的递推与递归

我们在开始就讲过题目十分存储和非存储的,上面那个题目就是此询问,如果改为多次询问我们该怎么办,我们会采用存储的方式,存储的方式适用于大部分的的多次查询问题。
我们看一下修改后的题目。

题目描述:

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。

指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……
在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)
我们将进行M次查询,每次输入一个N,其中n小于30。
请求出该数列中第n个数字(n从1开始计数)是多少?

样例:
输入样例
样例1输入:
	6
	4
	2
	7
	8
	8
	10
样例2输入:
	8
	13
	23
	14
	17
	24
	16
	10
	11
输出样例
样例1输出:
	3
	1
	13
	21
	21
	55
样例2输出:
	233
	28657
	377
	1597
	46368
	987
	55
	89

运行限制:

1. 最大运行时间:1s
2. 最大运行内存:128M
题目解析:

这道题跟上面一道题的算法原理相同,只是增加了多次查询的复杂度,所以仅需修改这一点即可。
再有的是有的同学担心自己的输入输出是在一个屏幕上的,评测的时候会不会出现问题。
类似这样的情况,这一点是不用担心的,只要不是交互题,评测机的输入与输出是分开的,只有你的输出会用来跟答案比较,所以我们只用关心我们的输出即可。
比如有一道题让你计算 x+y 的值,如果你知道每答案,就可以直接输出,都不用进行读入。

然后我们来看一下需要多次询问的题目该怎么解决。

答案解析
C++ 代码:
递推算法代码

#include <iostream>
using namespace std;
int F[35];

void init()
{
    F[0]=0;
    F[1]=1;
    for(int i=2;i<=30;i++)
    {
        F[i]=F[i-1]+F[i-2];
    }
}
int main()
{
    int m; //m次查询
    int n; //第几个数
    init();

    cin>>m;

    while(m>0)
    {
        m-=1;
        cin>>n;
        cout<<F[n]<<endl;
    }
}

存储答案的递推法,才是最常使用的递推法。

递归算法代码

#include <iostream>
using namespace std;
int F[35];

int fn(int n)
{
    //递归出口1
    if(n==0)
    {
        F[0]=0;
        return 0;
    }

    //递归出口2
    else if(n==1 )
    {
        F[1]=1;
        return 1;
    }

    else
    {
        F[n]=fn(n-1)+fn(n-2);
        return F[n]; //递归关系式
    }
}

int main()
{
    int m; //m次查询
    int n; //第几个数

    fn(30);
    cin>>m;

    while(m>0){
        m-=1;
        cin>>n;
        cout<<F[n]<<endl;
    }
}
数字三角形问题

题目描述:
图片描述
如图数字三角形。如下所示为一个数字三角形。请编一个程序计算从顶到底的某处的一条路径,使该路径所经过的数字总和最大。只要求输出总和。

  1. 一步可沿左斜线向下或右斜线向下走;
  2. 三角形行数小于等于 100;
  3. 三角形中的数字为 0,1,…,99;
    测试数据通过键盘逐行输入。
    如上例数据应以样例所示格式输入:
    样例:
输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出:
30

运行限制:

1. 最大运行时间:1s
2. 最大运行内存:128M

题目分析:
N=100,
S= ( 1 + 100 ) ∗ 100 = 1 0 4 (1+100)*100=10^4 (1+100)100=104
量级是 1 0 4 10^4 104,每个数都是0-99
最后是 1 0 6 10^6 106,用暴力也能做出来

解决该题目的方式有很多,包括动态规划, 枚举都可以解决这个问题。

我们从递推的思想出发,假设我们从顶层沿着某条路径已经走到了第 i 层,正向着 i+1 层前进, 两条可行路径中我们肯定会选择最大的方向前进,
为此我们可以采用递推中的反向递推,即逆推的方式解决,设 a [ i ] [ j ] a[i][j] a[i][j]存放从 i , j i,j i,j 出发到达第 n n n 层的最大值。
我们可以写出递推式:

a[i][j] = max{a[i][j]+a[i+1][j],a[i][j]+a[i+1][j+1]}

则 逆推到出发点 a [ 1 ] [ 1 ] a[1][1] a[1][1]为题目所求答案,即第一层到第 N N N层的最大值。
递推一层由

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

逆推第一层

7
3 8
8 1 0
7 12 10 10

第二层

7
3 8
20 13 10

第三层

7
23 21

第四层

30

递推的每次计算是 O ( 1 ) O(1) O(1) i i i是层数, j j j i i i层的这几个

C++ 代码:
#include<iostream>
using namespace std;

int main()
{
    int n; //n层
    int a[101][101]; //路径矩阵
    cin>>n;

    //输入数字三角形的值
    for (int i=1; i<=n; i++)
    {
        for (int j=1; j<=i; j++)
        {

        cin>>a[i][j]; //输入原始数据

        }
    }

    //递推开始

    for (int i=n-1; i>=1; i--)//从最后一层逆推
    {
        for (int j=1; j<=i; j++)
        {

            if (a[i+1][j]>=a[i+1][j+1])
                a[i][j]+=a[i+1][j];     //路径选择
            else
                a[i][j]+=a[i+1][j+1];
        }
    }

    cout<<a[1][1]<<endl;
}

递推法的推广

42点问题
题目描述

众所周知在扑克牌中,有一个老掉牙的游戏叫做 24 点:选取4 张牌进行加减乘除,看是否能得出 24 这个答案。
现在小蓝同学发明了一个新游戏,他从扑克牌中依次抽出6张牌(注意不是一次抽出),进行计算,看是否能够组成 42 点,满足输出 YES,反之输出 NO。
最先抽出来的牌作为第一个操作数,再抽出牌做第二个操作数,运算结果再当作第一个操作数,继续进行操作。除不尽的情况保留整数。
请你设计一个程序对该问题进行解答。

输入描述
输出仅一行包含 6 个字符。
保证字符∈3 4 5 6 7 8 9 10 J Q K A 2。

输出描述
若给出到字符能够组成 42 点,满足输出 YES,反之输出 NO。

题目解析

不是一次抽出,可以重复,有放回事件

数据输入

for (int i = 0; i < 6; i++)
{
	char c;
	cin >> c;
	if (c == 'A')
		a[i] = 1;

	else if (c == 'J')
		a[i] = 11;
	else if (c == 'Q')
		a[i] = 12;
	else if (c == 'K')
		a[i] = 13;

	else
		a[i] = (c - '0');
}

怎么枚举5次运算
共计 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 4*4*4*4*4=1024 44444=1024种情况
创建5个vector,分别用来存放1-5次的运算结果

vector <int> ans[10];
ans[0].push_back(a[0]);

for (int i = 1; i <= 5; i++)
{
	for (int j = 0; j < ans[i-1].size(); j++)
	{
		ans[i].push_back(ans[i-1][j]+a[i]);
		ans[i].push_back(ans[i-1][j]-a[i]);
		ans[i].push_back(ans[i-1][j]*a[i]);
		ans[i].push_back(ans[i-1][j]/a[i]);
	}
	
}

判断

int flag = 0;

for (int i = 0; i < ans[5].size(); i++)
{
	if (ans[5][i] == 42)
	{
		flag = 1;
		break;
	}
}
if (flag == 1)
	cout << "YES" << endl;
else
	cout << "NO" << endl;
数的计算
题目描述

我们要求找出具有下列性质数的个数(包含输入的自然数 n):
先输入一个自然数 n ( n ≤ 1000 ) n(n \le 1000) n(n1000),然后对此自然数按照如下方法进行处理:

  1. 不作任何处理:
  2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半:
  3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止。
    例:n=6,合法的数字有:6(不做任何处理)、16、26、36、126、136
题目解析

第一层递归,枚举 a = 1 , 2 , … , n 2 a=1,2,\dots,{\frac{n}{2}} a=1,2,,2n
第二层递归,枚举 b = 1 , 2 , … , a 2 b=1,2,\dots,{\frac{a}{2}} b=1,2,,2a
第三层递归,枚举 c = 1 , 2 , … , b 2 c=1,2,\dots,{\frac{b}{2}} c=1,2,,2b

最后一层,等于1,返回


6
6/2=3 构造出 16 26 36
再根据16,a=1 构造不出来了,1/2=0
再根据26,a=2 构造2/2=1,构造出126
再根据126,1/2=0,构造不出来了
再根据36,构造3/2=1,构造出136
136不能再产出新数字


void f (int n)
{
	if (n == 1)
		return;   //如果n = 1,满足条件的数的个数是1
	for (int i = 1; i <= n/2; i++)  //枚举左边加的数
	{
		res++;   //新得到一个数,满足条件的数的个数+1
		f(i);    //递归
	}
}

按照题目意思,我们可以直接枚举左边加的数。
定义递归函数 f(n)表示输入数为 n 时满足题目条件的数的个数。
我们可以从最简单的情况开始考虑。当n =1时,只有一个数,满足条件的数的个数是 1。
如果 n > 1,那么我们需要枚举左边加的数。因为最左边的数不能为 0,所以左边加上的数的取值范围是 [ 1 , n / 2 ] [1,{n/2}] [1,n/2]
对于每一个加数i,得到的新数是n+i,我们需要递归调用 f(n +i),计算得到新数下满足条件的数的个数。
在递归调用结束后,我们需要将所有加数得到的满足条件的数的个数相加,得到最终的结果。
最后,输出 f(n)即可。

N=1时,1/2=0,无法进行构造,就只有一个解
N=2时,2/2=1,恰好构造出了12和本身2
N=3时,3/2=1,恰好构造出了13和本身3
N=4时,4/2=2,能够构造出14 24 124 4
如果写成函数

f(4) = f(4/2=2)+f(2/2=1)+1   //124 24 / 14 / 4
f(5) = f(5/2=2)+f(2/2=1)+1   //125 25 / 15 / 5
...
f(n) = f(n/2)+f(n/2/2)+...+f(1)+1

递归式:

F(n):
	用i=(1-n/2)构造;
		对于每个生成的新的i,再次调用f(i)
		每构造一次就+1
代码
#include <iostream>
using namespace std;

int f[1000];
int main()
{
	int n;
	scanf("%d", n);

	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= i/2; j++)
		{
			f[i] = f[i] + f[j];
		}
		f[i] = f[i] + 1;
	}

	return 0;
}
数的划分
题目描述

将整数 n 分成k份,且每份不能为空,任意两份不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5;
1,5,1;
5,1,1;
问有多少种不同的分法。
输入描述
输入一行,2 个整数 n,k (6 ≤n≤ 200,2 ≤k≤ 6)。
输出描述
输出一个整数,即不同的分法


题目解析

计数dp,分治思想
7
4,2,1
定义递归函数 f ( n , m ) f(n,m) f(n,m)为将整数 n 拆分成 m 个数字的方案数。
对于每个情况,我们可以将它分成两种情况,且这两种情况是不重不漏的。

  1. 不选1的情况
    如果不选择 1,我们将 n 拆分成 m 块,可以等价于将每一块都减去 1,然后再将剩下的数拆分成m块,即 f ( n − m , m ) f(n-m,m) f(nm,m)
  2. 选1的情况:
    这种情况下,其中一块肯定有一个 1,然后对几-1拆分成 m-1块,即 f ( n − 1 , m − 1 ) f(n-1,m-1) f(n1,m1)
    此时, f ( n , m ) f(n,m) f(n,m)的值就是这两种情况之和,即
    f ( n , m ) = f ( n − m , m ) + f ( n − 1 , m − 1 ) f(n,m)=f(n-m,m)+f(n-1,m-1) f(n,m)=f(nm,m)+f(n1,m1)

对于样例7分3份:

  1. 不选1,那就先每份给个1
    111剩下了4,由于不选1,所以每组还得再分至少一个,所以就变成 f ( n − m , m ) f(n-m,m) f(nmm),即 7 − 3 = 4 7-3=4 73=4分成3份 f ( 4 , 3 ) f(4,3) f(4,3)
    对于 f ( 4 , 3 ) f(4,3) f(4,3)在考虑递归过程,同样分两种情况
    1. f ( 4 , 3 ) = f ( 4 − 3 , 3 ) + f ( 4 − 1 , 3 − 1 ) f(4,3)=f(4-3,3)+f(4-1,3-1) f(4,3)=f(43,3)+f(41,31)
      1. f(1,3)不合理,所以没有这种可能返回0
      2. f ( 3 , 2 ) = f ( 3 − 2 , 2 ) + f ( 3 − 1 , 2 − 1 ) f(3,2)=f(3-2,2)+f(3-1,2-1) f(3,2)=f(32,2)+f(31,21)
        1. f ( 1 , 2 ) f(1,2) f(1,2)不合理返回0
        2. f ( 2 , 1 ) f(2,1) f(2,1)两个数分成1堆,只有一种办法返回1
  2. 选1的情况,有且只能有1个1,所以1那个位置就不再改变,我们就去考虑剩下的7-1个数,分成3-1份,那就变成了 f ( n − 1 , m − 1 ) f(n-1,m-1) f(n1,m1) f ( 6 , 2 ) f(6,2) f(6,2)
    对于 f ( 6 , 2 ) f(6,2) f(6,2)使用同样的递归过程继续执行
代码
#include <bits/stdc++.h>
using namespace std;

int f(int n, int m)
{
	if (n == 0 || m == 0 || n < m)
	{
		return 0;
	}
	if (m == 1 || n == m)
	{
		return 1;
	}
	else
	{
		return f (n - m, m) + f(n - 1, m - 1);
	}
}

int main()
{
	int n, k;
	cin >> n >> k;
	cout << f (n, k) << "\n";
	return 0;
}
过多分支的一种处理思路
题目描述

古代中国使用天干地支来记录当前的年份。
天千一共有十个,分别为:甲、乙、丙、丁、戊、己、庚、辛、王、癸 。地支一共有十二个,分别为:子、丑、寅、卯、辰、日、午、未、申、酉、戌、亥将天干和地支连起来,就组成了一个天干地支的年份,例如:甲子。
2020 年是庚子年。
每过一年,天干和地支都会移动到下一个。例如2021年是辛丑年。
每过 60年,天千会循环6轮,地支会循环5轮,所以天干地支纪年每 60年轮回一次。例如 1900年,1960年,2020年都是庚子年给定一个公元纪年的年份,请输出这一年的天干地支年份。

输入描述

输入一行包含一个正整数,表示公元年份。
其中有 ,输入的公元年份为不超过9999的正整数。

输出描述

输入一行包含一个正整数,表示公元年份。


这个题目是模拟法中最讨厌也最常见的一种,可能还有比这更复杂的,但这道题,已经初具代表性
他的种类比较多,天干就有10种,地支有12种
现在我们知道了 2020年是庚子年,我们这里既可以是除留余数来判断N年是什么天干和什么地支,我们也可以直接暴力使用循环做,这样的话9999的复杂度也跑不了多久。
实现起来很简单,我们讲这个比较难的。
我们先判断0000年的天干和地支
根据题意8000年距2020年了2020年。
已知天干有10个,那么2020%10=0剩下的都是整个轮回,即到了0000年是庚X年,即天干是庚,
再按照这个方法算地支是2020%12=4及还要向前推四年地支为申。
即 0000 为申年,那么根据模拟法可知。

string tg(int n)
{
	n = n%10;
	if (n == 0)
		return "geng";
}
string dz(int n)
{
	...
}
string tg[10] = {"geng"."xin","ren","gui","jia","yi","bing","ding","wu","ji"};
string dz[12] = {"shen","you","xu","hai","zi","chou","yin","mou","chen","si","wu","wei"};

int main()
{
	int year;
	cin >> year;
	cout << tg[year%10] << dz[year%12] << endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/445673.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动化运维利器Ansible基础(环境部署)

Ansible 介绍及安装 1. 介绍 Ansible 是⼀个 IT ⾃动化⼯具。它能配置系统、部署软件、编 排更复杂的 IT 任务&#xff0c;如连续部署或零停机时间滚动更新。 Ansible ⽤ Python 编写&#xff0c;尽管市⾯上已经有很多可供选择的 配置管理解决⽅案&#xff08;例如 Salt、Pupp…

OpenAI GPT LLMs 高级提示词工程方法汇总

原文地址&#xff1a;An Introduction to Prompt Engineering for OpenAI GPT LLMs Github&#xff1a;Prompt-Engineering-Intro 2023 年 3 月 2 日 提示工程指南 | Prompt Engineering Guide Naive 提示词&#xff1a;带有提示的情感分类器 prompt Decide whether a T…

复合查询【MySQL】

文章目录 复合查询测试表 单表查询多表查询子查询单行子查询多行子查询IN 关键字ALL 关键字ANY 关键字 多列子查询 合并查询 复合查询 测试表 雇员信息表中包含三张表&#xff0c;分别是员工表&#xff08;emp&#xff09;、部门表&#xff08;dept&#xff09;和工资等级表&…

GEE:基于ERA5数据集(U和V风速分量)计算风速的幅值和风向

作者:CSDN @ _养乐多_ 本文将介绍使用Google Earth Engine (GEE)平台提供的API加载ERA5月度数据集,该数据集包含了从1979年至今的全球月度气象数据。然后,定义了一个数据计算函数,用于将U和V风速分量转换为风速的幅值和风向。 结果如下图所示, 文章目录 一、核心函数1…

基于单片机的语音存储与回放系统设计

目 录 摘 要 I Abstract II 引 言 1 1 控制系统设计 3 1.1 系统方案设计 3 1.2 系统工作原理 4 1.2.1 单片机的选择 4 1.2.2 语音芯片的选择 5 2 硬件电路设计 6 2.1 时钟电路 6 2.2 复位电路 6 2.3 显示电路 7 2.4 电源电路 7 2.5 按键模块电路 8 2.6 LM386功放电路 8 2.7 总…

基于深度学习YOLOv8+Pyqt5的抽烟吸烟检测识别系统(源码+跑通说明文件)

wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;39抽烟 获取完整源码源文件4000张已标注的数据集配置说明文件 可有偿59yuan一对一远程操作跑通 效果展示 基于深度学YOLOv8PyQt5的抽烟吸烟检测识别系统&#xff08;完整源码跑通说明文件&#xff09; 各文件说明 模型评价…

Seurat 中的数据可视化方法

本文[1]将使用从 2,700 PBMC 教程计算的 Seurat 对象来演示 Seurat 中的可视化技术。您可以从 SeuratData[2] 下载此数据集。 SeuratData::InstallData("pbmc3k")library(Seurat)library(SeuratData)library(ggplot2)library(patchwork)pbmc3k.final <- LoadData(…

【机器学习300问】31、不平衡数据集如何进行机器学习?

一、什么是不平衡的数据集&#xff1f; &#xff08;1&#xff09;认识不平衡数据 假如你正在管理一个果园&#xff0c;这个果园里主要有两种水果——苹果和樱桃。如果苹果树有1000棵&#xff0c;而樱桃树只有10棵&#xff0c;那么在收集果园的果实时&#xff0c;你会得到大量…

RocketMQ架构详解

文章目录 概述RocketMQ架构rocketmq的工作流程Broker 高可用集群刷盘策略 概述 RocketMQ一个纯java、分布式、队列模型的开源消息中间件&#xff0c;前身是MetaQ&#xff0c;是阿里研发的一个队列模型的消息中间件&#xff0c;后开源给apache基金会成为了apache的顶级开源项目…

全栈的自我修养 ———— css中常用的布局方法flex和grid

在项目里面有两种常用的主要布局:flex和grid布局&#xff08;b站布局&#xff09;&#xff0c;今天分享给大家这两种的常用的简单方法&#xff01; 一、flex布局1、原图2、中心对齐3、主轴末尾或者开始对其4、互相间隔 二、grid布局1、基本效果2、加间隔3、放大某一个元素 一、…

Nginx请求转发和Rewrite的URL重写及重定向的功能实现移动端和PC端前端服务转发和重定向配置。

应用场景说明一 应用系统分pc端和微信小程序&#xff0c;移动端和pc端分别申请二级子域名&#xff0c;通过Nginx域名解析匹配&#xff0c;将web访问统一转发至对应的域名请求中。部分配置如下所示&#xff1a; 1、WEB访问统一入口域名解析转发配置&#xff0c;PC端和移动端根域…

【论文整理】自动驾驶场景中Collaborative Methods多智能体协同感知文章创新点整理

Collaborative Methods F-CooperV2VNetWhen2commDiscoNetAttFusionV2X-ViTCRCNetCoBERTWhere2commDouble-MCoCa3D 这篇文章主要想整理一下&#xff0c;根据时间顺序这些文章是怎么说明自己的创新点的&#xff0c;又是怎么说明自己的文章比别的文章优越的。显然似乎很多文章只是…

数据结构与算法:链式二叉树

上一篇文章我们结束了二叉树的顺序存储&#xff0c;本届内容我们来到二叉树的链式存储&#xff01; 链式二叉树 1.链式二叉树的遍历1.1二叉树的前序&#xff0c;中序&#xff0c;后序遍历1.2 三种遍历方法代码实现 2. 获取相关个数2.1获取节点个数2.2获取叶节点个数2.3 获取树的…

前端请求到 SpringMVC 的处理流程

1. 发起请求 客户端通过 HTTP 协议向服务器发起请求。 2. 前端控制器&#xff08;DispatcherServlet&#xff09; 这个请求会先到前端控制器 DispatcherServlet&#xff0c;它是整个流程的入口点&#xff0c;负责接收请求并将其分发给相应的处理器。 3. 处理器映射&#xf…

数据库-多表查询

外连接与内连接 -- 查询部门及所属部门名称&#xff0c;隐式内连接 select tb_emp.name,tb_dept.name from tb_emp,tb_dept where tb_emp.dept_idtb_dept.id;-- 起别名 select e.name,q.name from tb_emp e,tb_dept q where e.dept_idq.id;-- 外连接 select tb_emp.name,tb_dep…

GEE图像可视化常用函数

目录 图层操作Map.addLayer&#xff08;&#xff09;Map.centerObject&#xff08;&#xff09; 直方图ui.Chart.image.histogram&#xff08;&#xff09; 趋势线ui.Chart.image.series&#xff08;&#xff09; 图层操作 Map.addLayer&#xff08;&#xff09; Map.addLaye…

python并发编程:异步IO(Asynchronous I/O)

异步IO(Asynchronous I/O) Linux下的asynchronous IO其实用得不多&#xff0c;从内核2.6版本才开始引入。先看一下它的流程&#xff1a; 用户进程发起read操作之后&#xff0c;立刻就可以开始去做其它的事。而另一方面&#xff0c;从kernel的角度&#xff0c;当它受到一个asyn…

RocketMQ、Kafka、RabbitMQ 消费原理,顺序消费问题【图文理解】

B站视频地址 文章目录 一、开始二、结果1、RocketMQ 消费关系图1-1、queue和consumer的关系1-2、consumer 和线程的关系 2、Kafka 消费关系图1-1、partitions和consumer的关系1-2、consumer 和线程的关系 3、RabbitMQ 消费关系图1-1、queue和consumer的关系1-2、consumer 和线程…

爬虫练习:获取某招聘网站Python岗位信息

一、相关网站 二、相关代码 import requests from lxml import etree import csv with open(拉钩Python岗位数据.csv, w, newline, encodingutf-8) as csvfile:fieldnames [公司, 规模,岗位,地区,薪资,经验要求]writer csv.DictWriter(csvfile, fieldnamesfieldnames)writer…

每日OJ题_牛客WY28 跳石板(动态规划)

目录 牛客WY28 跳石板 解析代码 牛客WY28 跳石板 跳石板_牛客题霸_牛客网 解析代码 #include <iostream> #include <vector> #include <climits> #include <cmath> using namespace std;void get_div_num(int n, vector<int>& arr) {for…