seq2seq翻译实战-Pytorch复现

🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

一、前期准备 

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random

import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

1.1 搭建语言类
 

定义了两个常量 SOS_token 和 EOS_token,其分别代表序列的开始和结束。 Lang 类,用于方便对语料库进行操作:
●word2index 是一个字典,将单词映射到索引
●word2count 是一个字典,记录单词出现的次数
●index2word 是一个字典,将索引映射到单词
●n_words 是单词的数量,初始值为 2,因为序列开始和结束的单词已经被添加

SOS_token = 0
EOS_token = 1
 
# 语言类,方便对语料库进行操作
class Lang:
    def __init__(self, name):
        self.name = name
        self.word2index = {}
        self.word2count = {}
        self.index2word = {0: "SOS", 1: "EOS"}
        self.n_words    = 2  # Count SOS and EOS
 
    def addSentence(self, sentence):
        for word in sentence.split(' '):
            self.addWord(word)
 
    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.n_words
            self.word2count[word] = 1
            self.index2word[self.n_words] = word
            self.n_words += 1
        else:
            self.word2count[word] += 1

1.2 文本处理函数

def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )
 
# 小写化,剔除标点与非字母符号
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    return s

1.3 文件读取函数

def readLangs(lang1, lang2, reverse=False):
    print("Reading lines...")

    # 以行为单位读取文件
    lines = open('%s-%s.txt' % (lang1, lang2), encoding='utf-8'). \
        read().strip().split('\n')

    # 将每一行放入一个列表中
    # 一个列表中有两个元素,A语言文本与B语言文本
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]

    # 创建Lang实例,并确认是否反转语言顺序
    if reverse:
        pairs = [list(reversed(p)) for p in pairs]
        input_lang = Lang(lang2)
        output_lang = Lang(lang1)
    else:
        input_lang = Lang(lang1)
        output_lang = Lang(lang2)

    return input_lang, output_lang, pairs


MAX_LENGTH = 10  # 定义语料最长长度

eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ",
    "she is", "she s ",
    "you are", "you re ",
    "we are", "we re ",
    "they are", "they re "
)


def filterPair(p):
    return len(p[0].split(' ')) < MAX_LENGTH and \
           len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes)


def filterPairs(pairs):
    # 选取仅仅包含 eng_prefixes 开头的语料
    return [pair for pair in pairs if filterPair(pair)]


def prepareData(lang1, lang2, reverse=False):
    # 读取文件中的数据
    input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
    print("Read %s sentence pairs" % len(pairs))

    # 按条件选取语料
    pairs = filterPairs(pairs[:])
    print("Trimmed to %s sentence pairs" % len(pairs))
    print("Counting words...")

    # 将语料保存至相应的语言类
    for pair in pairs:
        input_lang.addSentence(pair[0])
        output_lang.addSentence(pair[1])

    # 打印语言类的信息
    print("Counted words:")
    print(input_lang.name, input_lang.n_words)
    print(output_lang.name, output_lang.n_words)
    return input_lang, output_lang, pairs


input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))

常量 MAX_LENGTH,表示语料中句子的最大长度。

元组 eng_prefixes,包含一些英语句子的前缀。这些前缀用于筛选语料,只选择以这些前缀开头的句子

filterPair 函数用于过滤语料对。它的返回值是一个布尔值,表示是否保留该语料对。这里的条件是:两个句子的长度都不超过 MAX_LENGTH,并且输出语句(第二个句子)以 eng_prefixes 中的某个前缀开头

filterPairs 函数接受一个语料对列表,然后调用 filterPair 函数过滤掉不符合条件的语料对,返回一个新的语料对列表。

prepareData 函数是主要的数据准备函数。它调用了之前定义的 readLangs 函数来读取语言对,然后使用 filterPairs 函数按条件过滤语料对。接着,它打印读取的句子对数、过滤后的句子对数,并统计语料中的词汇量。最后,它将语料保存到相应的语言类中,并返回这些语言类对象以及过滤后的语料对。

二、Seq2Seq 模型

 2.1 编码器(Encoder)

class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.embedding   = nn.Embedding(input_size, hidden_size)
        self.gru         = nn.GRU(hidden_size, hidden_size)
 
    def forward(self, input, hidden):
        embedded       = self.embedding(input).view(1, 1, -1)
        output         = embedded
        output, hidden = self.gru(output, hidden)
        return output, hidden
 
    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

2.2 解码器(Decoder)

class DecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.embedding   = nn.Embedding(output_size, hidden_size)
        self.gru         = nn.GRU(hidden_size, hidden_size)
        self.out         = nn.Linear(hidden_size, output_size)
        self.softmax     = nn.LogSoftmax(dim=1)
 
    def forward(self, input, hidden):
        output         = self.embedding(input).view(1, 1, -1)
        output         = F.relu(output)
        output, hidden = self.gru(output, hidden)
        output         = self.softmax(self.out(output[0]))
        return output, hidden
 
    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

三、训练

3.1 数据预处理

def indexesFromSentence(lang, sentence):
    return [lang.word2index[word] for word in sentence.split(' ')]
 
# 将数字化的文本,转化为tensor数据
def tensorFromSentence(lang, sentence):
    indexes = indexesFromSentence(lang, sentence)
    indexes.append(EOS_token)
    return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
 
# 输入pair文本,输出预处理好的数据
def tensorsFromPair(pair):
    input_tensor  = tensorFromSentence(input_lang, pair[0])
    target_tensor = tensorFromSentence(output_lang, pair[1])
    return (input_tensor, target_tensor)

3.2 训练函数

使用use_teacher_forcing 的目的是在训练过程中平衡解码器的预测能力和稳定性。以下是对两种策略的解释:
1. Teacher Forcing:在每个时间步(di循环中),解码器的输入都是目标序列中的真实标签。这样做的好处是,解码器可以直接获得正确的输入信息,加快训练速度,并且在训练早期提供更准确的梯度信号,帮助解码器更好地学习。然而,过度依赖目标序列可能会导致模型过于敏感,一旦目标序列中出现错误,可能会在解码器中产生累积的误差。
2. Without Teacher Forcing:在每个时间步,解码器的输入是前一个时间步的预测输出。这样做的好处是,解码器需要依靠自身的预测能力来生成下一个输入,从而更好地适应真实应用场景中可能出现的输入变化。这种策略可以提高模型的稳定性,但可能会导致训练过程更加困难,特别是在初始阶段。一般来说,Teacher Forcing策略在训练过程中可以帮助模型快速收敛,而Without Teacher Forcing策略则更接近真实应用中的生成场景。通常会使用一定比例的Teacher Forcing,在训练过程中逐渐减小这个比例,以便模型逐渐过渡到更自主的生成模式。
综上所述,通过使用use_teacher_forcing 来选择不同的策略,可以在训练解码器时平衡模型的预测能力和稳定性,同时也提供了更灵活的生成模式选择。

teacher_forcing_ratio = 0.5
 
def train(input_tensor, target_tensor, 
          encoder, decoder, 
          encoder_optimizer, decoder_optimizer, 
          criterion, max_length=MAX_LENGTH):
    
    # 编码器初始化
    encoder_hidden = encoder.initHidden()
    
    # grad属性归零
    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()
 
    input_length  = input_tensor.size(0)
    target_length = target_tensor.size(0)
    
    # 用于创建一个指定大小的全零张量(tensor),用作默认编码器输出
    encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
 
    loss = 0
    
    # 将处理好的语料送入编码器
    for ei in range(input_length):
        encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
        encoder_outputs[ei]            = encoder_output[0, 0]
    
    # 解码器默认输出
    decoder_input  = torch.tensor([[SOS_token]], device=device)
    decoder_hidden = encoder_hidden
 
    use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
    
    # 将编码器处理好的输出送入解码器
    if use_teacher_forcing:
        # Teacher forcing: Feed the target as the next input
        for di in range(target_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            
            loss         += criterion(decoder_output, target_tensor[di])
            decoder_input = target_tensor[di]  # Teacher forcing
    else:
        # Without teacher forcing: use its own predictions as the next input
        for di in range(target_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            
            topv, topi    = decoder_output.topk(1)
            decoder_input = topi.squeeze().detach()  # detach from history as input
 
            loss         += criterion(decoder_output, target_tensor[di])
            if decoder_input.item() == EOS_token:
                break
 
    loss.backward()
 
    encoder_optimizer.step()
    decoder_optimizer.step()
 
    return loss.item() / target_length

import time
import math
 
def asMinutes(s):
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)
 
def timeSince(since, percent):
    now = time.time()
    s = now - since
    es = s / (percent)
    rs = es - s
    return '%s (- %s)' % (asMinutes(s), asMinutes(rs))

def trainIters(encoder,decoder,n_iters,print_every=1000,
               plot_every=100,learning_rate=0.01):
    
    start = time.time()
    plot_losses      = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total  = 0  # Reset every plot_every
 
    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
    
    # 在 pairs 中随机选取 n_iters 条数据用作训练集
    training_pairs    = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]
    criterion         = nn.NLLLoss()
 
    for iter in range(1, n_iters + 1):
        training_pair = training_pairs[iter - 1]
        input_tensor  = training_pair[0]
        target_tensor = training_pair[1]
 
        loss = train(input_tensor, target_tensor, encoder,
                     decoder, encoder_optimizer, decoder_optimizer, criterion)
        print_loss_total += loss
        plot_loss_total  += loss
 
        if iter % print_every == 0:
            print_loss_avg   = print_loss_total / print_every
            print_loss_total = 0
            print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                                         iter, iter / n_iters * 100, print_loss_avg))
 
        if iter % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0
 
    return plot_losses

四、训练与评估

hidden_size   = 256
encoder1      = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = DecoderRNN(hidden_size, output_lang.n_words).to(device)
 
plot_losses = trainIters(encoder1, attn_decoder1, 100000, print_every=5000)

 

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               # 忽略警告信息
# plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        # 分辨率
 
epochs_range = range(len(plot_losses))
 
plt.figure(figsize=(8, 3))
 
plt.subplot(1, 1, 1)
plt.plot(epochs_range, plot_losses, label='Training Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/442658.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

有点NB的免费wordpress主题模板

一个不错的黄色模板&#xff0c;用WP免费主题模板搭建家政服务公司网站。 https://www.wpniu.com/themes/15.html

Spring Boot中Excel数据导入导出的高效实现

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

数据结构之八大排序

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary_walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…

若依/RuoYi-Vue使用docker-compose部署

系统需求 JDK > 1.8 MySQL > 5.7 Maven > 3.0 Node > 12 Redis > 3 思路 前端服务器 nginx 后端服务器代码打包 java、maven、node 数据库/缓存 mysql、redis 开始 创建目录ruoyi并进入 克隆若依代码 git clone RuoYi-Vue: &#x1f389; 基于Spring…

【Kotlin】类和对象

1 前言 Kotlin 是面向对象编程语言&#xff0c;与 Java 语言类似&#xff0c;都有类、对象、属性、构造函数、成员函数&#xff0c;都有封装、继承、多态三大特性&#xff0c;不同点如下。 Java 有静态&#xff08;static&#xff09;代码块&#xff0c;Kotlin 没有&#xff1…

探索 ON1 Resize Ai 2023.5 for Mac/win:释放图像的无限可能

ON1 Resize AI 2023.5 for Mac/Win 是一款专业的图像无损放大软件&#xff0c;通过人工智能技术&#xff0c;能够将图像放大至更高的分辨率&#xff0c;同时保持图像细节和清晰度的最佳状态。该软件的强大功能和直观的操作界面&#xff0c;使它成为摄影师、设计师和艺术家的理想…

WinCE USB驱动架构及术语明析

一、层式驱动的概念。 WinCE驱动多为层式驱动&#xff0c;分为MDD和PDD两层。 MDD包含通用的驱动代码&#xff0c;向操作系统提供了驱动接口&#xff0c;该层代码调用PDD功能访问硬件。 PDD部分包含与硬件平台相关的特殊代码&#xff0c;不具有通用性。 之所以要分层&#xff0…

day-18 轮转数组

时间复杂度为O&#xff08;n&#xff09; code: class Solution {public void rotate(int[] nums, int k) {int nnums.length;kk%n;int arr[]new int[n];for(int i0;i<n;i){arr[(ik)%n]nums[i];}for(int i0;i<n;i){nums[i]arr[i];}} }参考答案 进行三次翻转 空间复杂度O…

03_Tomcat

文章目录 Tomcat概念自制简易的服务器JavaEE规范Tomcat安装Tomcat启动Tomcat的资源部署直接部署虚拟映射 Tomcat的设置 Tomcat 概念 服务器&#xff1a;两层含义。 软件层面&#xff1a;软件&#xff0c;可以将本地的资源发布到网络中&#xff0c;供网络上面的其他用户来访问…

STM32 | STM32F407ZE(LED寄存器开发续第二天源码)

上节回顾 STM32 | STM32时钟分析、GPIO分析、寄存器地址查找、LED灯开发(第二天)STM32 | Proteus 8.6安装步骤(图文并茂)一、 LED灯开发 1、理解led灯原理图 LED0连接在PF9 PF9输出低电平(0),灯亮;PF9输出高电平(1),灯灭;(低电平有效) 2、打开GPIOF组时钟 //将…

论文学习——基于距离的随机变化动态多目标优化的马氏诺比斯方法

论文题目&#xff1a;A Mahalanobis Distance-Based Approach for Dynamic Multiobjective Optimization With Stochastic Changes 基于距离的随机变化动态多目标优化的马氏诺比斯方法&#xff08;Ya ru H u , Jinhua Zheng , Shouyong Jiang, Shengxiang Yang , Senior Membe…

云计算科学与工程实践指南--章节引言收集

云计算科学与工程实践指南–章节引言收集 //本文收集 【云计算科学与工程实践指南】 书中每一章节的引言。 我已厌倦了在一本书中阅读云的定义。难道你不失望吗&#xff1f;你正在阅读一个很好的故事&#xff0c;突然间作者必须停下来介绍云。谁在乎云是什么&#xff1f; 通…

借助产品说明书模板,让你轻松制作产品说明书

产品说明书是一种普遍存在的文档&#xff0c;在我们日常生活和工作中&#xff0c;您可能需要为自己的产品或服务创建一个。这是因为产品说明书是介绍产品特性、使用说明、维护方式以及注意事项等内容的有效工具。然而&#xff0c;制作产品说明书可能是一个复杂且困难的过程&…

stable diffusion 零基础入门教程

一、前言 Midjourney 生成的图片很难精准的控制&#xff0c;随机性很高&#xff0c;需要大量的跑图&#xff0c;但Stable Diffusion可以根据模型较精准的控制。 SD 效果图展示&#xff1a; 二、Stable Diffusion 介绍 Stable Diffusion 是一款基于人工智能技术开发的绘画软件…

灯塔:CSS笔记(2)

一 选择器进阶 后代选择器&#xff1a;空格 作用&#xff1a;根据HTML标签的嵌套关系&#xff0c;&#xff0c;选择父元素 后代中满足条件的元素 选择器语法&#xff1a;选择器1 选择器2{ css } 结果&#xff1a; *在选择器1所找到标签的后代&#xff08;儿子 孙子 重孙子…

基于Springboot的智慧社区居家养老健康管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的智慧社区居家养老健康管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;…

膜厚测量仪在半导体应用中及其重要

随着科技的不断发展&#xff0c;半导体行业已成为当今世界的核心产业之一。在这个领域中&#xff0c;半导体膜厚测量仪作为关键设备&#xff0c;其精度和可靠性对于产品质量和生产效率具有至关重要的作用。本文将详细介绍半导体膜厚测量仪的工作原理、应用领域以及其在半导体制…

如何分辨Mac设备X86或ARM

在终端中输入如下命令可以获取到当前 Mac 设备是 X86 还是 ARM 类型 uname -a 以上便是此次分享的全部内容&#xff0c;希望能对大家有所帮助!

运动想象 (MI) 迁移学习系列 (2) :TDLNet

运动想象迁移学习系列:TDLNet 0. 引言1. 主要贡献2. 网络介绍2.1 TDM模块2.2 Inception模块2.3 RAMM模块 3. 特征可视化算法4. 结果4.1 消融实验4.2 与基于CNN的参考和迁移学习方法的比较4.3 基于遮挡信号频率的特征可视化 5. 总结欢迎来稿 论文地址&#xff1a;https://ieeex…

委员建议进一步扩大香港与内地金融市场互联互通发展

在我们共同追寻金融发展的星辰大海之际&#xff0c;我怀着无比激动的心情&#xff0c;向诸位委员提议进一步扩大香港与内地金融市场互联互通发展。这个议题犹如一颗璀璨的明珠&#xff0c;闪耀着诱人的光芒&#xff0c;吸引着我们为之奋斗。让我们共同探讨这一话题&#xff0c;…