【Matlab】基于遗传算法优化 BP 神经网络的时间序列预测(Excel可直接替换数据)

【Matlab】基于遗传算法优化 BP 神经网络的时间序列预测(Excel可直接替换数据)

  • 1.模型原理
  • 2.文件结构
  • 3.Excel数据
  • 4.分块代码
    • 4.1 arithXover.m
    • 4.2 delta.m
    • 4.3 ga.m
    • 4.4 gabpEval.m
    • 4.5 initializega.m
    • 4.6 maxGenTerm.m
    • 4.7 nonUnifMutation.m
    • 4.8 normGeomSelect.m
    • 4.9 parse.m
    • 4.10 gadecod.m
    • 4.11 main.m
  • 5.运行结果

1.模型原理

当遗传算法用于优化BP神经网络的时间序列预测时,我们可以使用如下的数学原理来描述其步骤:

  1. 定义问题:
    假设我们有一个时间序列数据集 { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) } \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} {(x1,y1),(x2,y2),,(xn,yn)},其中 x i x_i xi 是时间步i的输入样本, y i y_i yi 是对应的时间步i的目标值(实际输出)。时间序列预测任务的目标是根据过去的观测值预测未来的值。

  2. BP神经网络结构:
    假设BP神经网络有L层,第l层有 n l n_l nl 个神经元。 w i j ( l ) w_{ij}^{(l)} wij(l) 表示第l-1层第i个神经元到第l层第j个神经元之间的连接权重, b i ( l ) b_i^{(l)} bi(l) 表示第l层第i个神经元的偏置。神经网络的输入是 x i x_i xi,第l层第i个神经元的输出(经过激活函数后的值)为 a i ( l ) a_i^{(l)} ai(l)

  3. 目标函数:
    在时间序列预测问题中,我们可以使用均方误差(Mean Squared Error,MSE)作为BP神经网络的目标函数,用于衡量实际输出值与预测输出值之间的差距。MSE可以定义为:

    MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2

    其中, n n n是时间序列的长度, y i y_i yi是第i个时间步的实际输出, y ^ i \hat{y}_i y^i是BP神经网络在输入 x i x_i xi 上的预测输出。

  4. 遗传算法编码:
    同样地,我们将BP神经网络的所有参数(权重和偏置)编码成一个染色体,通常用一个长向量来表示。染色体可以表示为:

    染色体 = [ w 11 ( 1 ) , w 12 ( 1 ) , … , w n 1 ( 1 ) ( 1 ) , w 11 ( 2 ) , w 12 ( 2 ) , … , w n L − 1 ( L ) ( L ) , b 1 ( 1 ) , b 2 ( 1 ) , … , b n 1 ( L ) ( L ) ] \text{染色体} = [w_{11}^{(1)}, w_{12}^{(1)}, \ldots, w_{n_1^{(1)}}^{(1)}, w_{11}^{(2)}, w_{12}^{(2)}, \ldots, w_{n_{L-1}^{(L)}}^{(L)}, b_1^{(1)}, b_2^{(1)}, \ldots, b_{n_1^{(L)}}^{(L)}] 染色体=[w11(1),w12(1),,wn1(1)(1),w11(2),w12(2),,wnL1(L)(L),b1(1),b2(1),,bn1(L)(L)]

    其中, w i j ( l ) w_{ij}^{(l)} wij(l) 表示第l-1层第i个神经元到第l层第j个神经元之间的连接权重, b i ( l ) b_i^{(l)} bi(l) 表示第l-1层第i个神经元的偏置。

  5. 适应度函数:
    在时间序列预测问题中,适应度函数可以定义为目标函数MSE的倒数(加上一个常数,以避免除以0):

    适应度 = 1 MSE + ϵ \text{适应度} = \frac{1}{\text{MSE} + \epsilon} 适应度=MSE+ϵ1

    其中, ϵ \epsilon ϵ 是一个小的常数,用于避免分母为0的情况。

  6. 选择:
    采用基于适应度函数的选择策略,选择适应度较高的个体作为“父代”,用于产生下一代个体。

  7. 交叉(Crossover):
    对选出的父代个体进行交叉操作,通过模拟基因交换过程,生成新的个体。假设选中的两个父代个体分别为个体A和个体B,交叉操作可以通过如下方式进行:

    子代个体 = [ A [ 1 : k ] , B [ k + 1 : e n d ] ] \text{子代个体} = [A[1:k], B[k+1:end]] 子代个体=[A[1:k],B[k+1:end]]

    其中, A [ 1 : k ] A[1:k] A[1:k] 表示个体A的前k个基因, B [ k + 1 : e n d ] B[k+1:end] B[k+1:end] 表示个体B的第k+1个基因到最后一个基因。

  8. 变异(Mutation):
    对交叉得到的子代个体进行变异操作,通过随机改变染色体中的某些基因值来引入新的解。变异操作可以用如下方式实现:

    子代个体 [ i ] = 子代个体 [ i ] + 随机增量 \text{子代个体}[i] = \text{子代个体}[i] + \text{随机增量} 子代个体[i]=子代个体[i]+随机增量

    其中, 子代个体 [ i ] \text{子代个体}[i] 子代个体[i] 表示子代个体中的第i个基因, 随机增量 \text{随机增量} 随机增量 是一个随机数,用于在某个范围内调整基因的值。

  9. 生成下一代种群:
    将交叉和变异得到的子代个体与上一代的个体结合,形成下一代种群。

  10. 终止条件:
    根据预定的终止条件(如迭代次数、达到某个适应度阈值等),判断是否结束优化过程。

  11. 解码:
    将优化后的染色体解码,得到BP神经网络的新参数。

  12. 更新BP神经网络参数:
    将解码得到的新参数应用于BP神经网络,更新其权重和偏置。

  13. 重复迭代:
    重复进行步骤5到步骤12,直到满足终止条件为止。

2.文件结构

在这里插入图片描述

goat
	arithXover.m
	delta.m
	ga.m
	gabpEval.m
	initializega.m
	maxGenTerm.m
	nonUnifMutation.m
	normGeomSelect.m
	parse.m
gadecod.m
main.m							% 主函数
数据集.xlsx						% 可替换数据集

3.Excel数据

在这里插入图片描述

4.分块代码

4.1 arithXover.m

function [C1, C2] = arithXover(P1, P2, ~, ~)
%%  Arith 交叉采用两个父节点 P1、P2 并沿两个父节点形成的线执行插值。
% P1      - the first parent ( [solution string function value] )
% P2      - the second parent ( [solution string function value] )
% bounds  - the bounds matrix for the solution space
% Ops     - Options matrix for arith crossover [gen #ArithXovers]

%%  选择一个随机的混合量
a = rand;

%%  创建子代
C1 = P1 * a + P2 * (1 - a);
C2 = P1 * (1 - a) + P2 * a;

4.2 delta.m

function change = delta(ct, mt, y, b)

% delta 函数是非均匀突变使用的非均匀分布。
% 此函数根据当前发电量、最大发电量和可能的偏差量返回变化。
%
% ct - current generation
% mt - maximum generation
% y  - maximum amount of change, i.e. distance from parameter value to bounds
% b  - shape parameter

%%  
r = ct / mt;
if(r > 1)
  r = 0.99;
end
change = y * (rand * (1 - r)) ^ b;

4.3 ga.m

function [x, endPop, bPop, traceInfo] = ga(bounds, evalFN, evalOps, startPop, opts, ...
termFN, termOps, selectFN, selectOps, xOverFNs, xOverOps, mutFNs, mutOps)
                              
% Output Arguments:
%   x            - the best solution found during the course of the run
%   endPop       - the final population 
%   bPop         - a trace of the best population
%   traceInfo    - a matrix of best and means of the ga for each generation
%
% Input Arguments:
%   bounds       - a matrix of upper and lower bounds on the variables
%   evalFN       - the name of the evaluation .m function
%   evalOps      - options to pass to the evaluation function ([NULL])
%   startPop     - a matrix of solutions that can be initialized
%                  from initialize.m
%   opts         - [epsilon prob_ops display] change required to consider two 
%                  solutions different, prob_ops 0 if you want to apply the
%                  genetic operators probabilisticly to each solution, 1 if
%                  you are supplying a deterministic number of operator
%                  applications and display is 1 to output progress 0 for
%                  quiet. ([1e-6 1 0])
%   termFN       - name of the .m termination function (['maxGenTerm'])
%   termOps      - options string to be passed to the termination function
%                  ([100]).
%   selectFN     - name of the .m selection function (['normGeomSelect'])
%   selectOpts   - options string to be passed to select after
%                  select(pop,#,opts) ([0.08])
%   xOverFNS     - a string containing blank seperated names of Xover.m
%                  files (['arithXover heuristicXover simpleXover']) 
%   xOverOps     - A matrix of options to pass to Xover.m files with the
%                  first column being the number of that xOver to perform
%                  similiarly for mutation ([2 0;2 3;2 0])
%   mutFNs       - a string containing blank seperated names of mutation.m 
%                  files (['boundaryMutation multiNonUnifMutation ...
%                           nonUnifMutation unifMutation'])
%   mutOps       - A matrix of options to pass to Xover.m files with the
%                  first column being the number of that xOver to perform
%                  similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0])

%%  初始化参数
n = nargin;
if n < 2 || n == 6 || n == 10 || n == 12
  disp('Insufficient arguements') 
end

% 默认评估选项
if n < 3 
  evalOps = [];
end

% 默认参数
if n < 5
  opts = [1e-6, 1, 0];
end

% 默认参数
if isempty(opts)
  opts = [1e-6, 1, 0];
end

%%  判断是否为m文件
if any(evalFN < 48)
  % 浮点数编码 
  if opts(2) == 1
    e1str = ['x=c1; c1(xZomeLength)=', evalFN ';'];  
    e2str = ['x=c2; c2(xZomeLength)=', evalFN ';']; 
  % 二进制编码
  else
    e1str = ['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=', evalFN ';'];
  end
else
  % 浮点数编码
  if opts(2) == 1
    e1str = ['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];  
    e2str = ['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];
  % 二进制编码
  else
    e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN ...
	'(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];  
  end
end

%%  默认终止信息
if n < 6
  termOps = 100;
  termFN = 'maxGenTerm';
end

%%  默认变异信息
if n < 12
  % 浮点数编码
  if opts(2) == 1
  mutFNs = 'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation';
    mutOps = [4, 0, 0; 6, termOps(1), 3; 4, termOps(1), 3;4, 0, 0];
  % 二进制编码
  else
    mutFNs = 'binaryMutation';
    mutOps = 0.05;
  end
end

%%  默认交叉信息
if n < 10
  % 浮点数编码
  if opts(2) == 1
    xOverFNs = 'arithXover heuristicXover simpleXover';
    xOverOps = [2, 0; 2, 3; 2, 0];
  % 二进制编码
  else
    xOverFNs = 'simpleXover';
    xOverOps = 0.6;
  end
end

%%  仅默认选择选项,即轮盘赌。
if n < 9
  selectOps = [];
end

%%  默认选择信息
if n < 8
  selectFN = 'normGeomSelect';
  selectOps = 0.08;
end

%%  默认终止信息
if n < 6
  termOps = 100;
  termFN = 'maxGenTerm';
end

%%  没有定的初始种群
if n < 4
  startPop = [];
end

%%  随机生成种群
if isempty(startPop)
  startPop = initializega(80, bounds, evalFN, evalOps, opts(1: 2));
end

%%  二进制编码
if opts(2) == 0
  bits = calcbits(bounds, opts(1));
end

%%  参数设置
xOverFNs     = parse(xOverFNs);
mutFNs       = parse(mutFNs);
xZomeLength  = size(startPop, 2); 	          % xzome 的长度
numVar       = xZomeLength - 1; 	          % 变量数
popSize      = size(startPop,1); 	          % 种群人口个数
endPop       = zeros(popSize, xZomeLength);   % 第二种群矩阵
numXOvers    = size(xOverFNs, 1);             % Number of Crossover operators
numMuts      = size(mutFNs, 1); 		      % Number of Mutation operators
epsilon      = opts(1);                       % Threshold for two fittness to differ
oval         = max(startPop(:, xZomeLength)); % Best value in start pop
bFoundIn     = 1; 			                  % Number of times best has changed
done         = 0;                             % Done with simulated evolution
gen          = 1; 			                  % Current Generation Number
collectTrace = (nargout > 3); 		          % Should we collect info every gen
floatGA      = opts(2) == 1;                  % Probabilistic application of ops
display      = opts(3);                       % Display progress 

%%  精英模型
while(~done)
  [bval, bindx] = max(startPop(:, xZomeLength));            % Best of current pop
  best =  startPop(bindx, :);
  if collectTrace
    traceInfo(gen, 1) = gen; 		                        % current generation
    traceInfo(gen, 2) = startPop(bindx,  xZomeLength);      % Best fittness
    traceInfo(gen, 3) = mean(startPop(:, xZomeLength));     % Avg fittness
    traceInfo(gen, 4) = std(startPop(:,  xZomeLength)); 
  end
  
  %%  最佳解
  if ( (abs(bval - oval) > epsilon) || (gen==1))
    
    % 更新显示
    if display
      fprintf(1, '\n%d %f\n', gen, bval);          
    end

    % 更新种群矩阵
    if floatGA
      bPop(bFoundIn, :) = [gen, startPop(bindx, :)]; 
    else
      bPop(bFoundIn, :) = [gen, b2f(startPop(bindx, 1 : numVar), bounds, bits)...
	  startPop(bindx, xZomeLength)];
    end

    bFoundIn = bFoundIn + 1;                      % Update number of changes
    oval = bval;                                  % Update the best val
  else
    if display
      fprintf(1,'%d ',gen);	                      % Otherwise just update num gen
    end
  end
%%  选择种群
  endPop = feval(selectFN, startPop, [gen, selectOps]);
  
  % 以参数为操作数的模型运行
  if floatGA
    for i = 1 : numXOvers
      for j = 1 : xOverOps(i, 1)
          a = round(rand * (popSize - 1) + 1); 	     % Pick a parent
	      b = round(rand * (popSize - 1) + 1); 	     % Pick another parent
	      xN = deblank(xOverFNs(i, :)); 	         % Get the name of crossover function
	      [c1, c2] = feval(xN, endPop(a, :), endPop(b, :), bounds, [gen, xOverOps(i, :)]);

          % Make sure we created a new 
          if c1(1 : numVar) == endPop(a, (1 : numVar)) 
	         c1(xZomeLength) = endPop(a, xZomeLength);
	      elseif c1(1:numVar) == endPop(b, (1 : numVar))
	         c1(xZomeLength) = endPop(b, xZomeLength);
          else
             eval(e1str);
          end

          if c2(1 : numVar) == endPop(a, (1 : numVar))
	          c2(xZomeLength) = endPop(a, xZomeLength);
	      elseif c2(1 : numVar) == endPop(b, (1 : numVar))
	          c2(xZomeLength) = endPop(b, xZomeLength);
          else
	          eval(e2str);
          end

          endPop(a, :) = c1;
          endPop(b, :) = c2;
      end
    end

    for i = 1 : numMuts
      for j = 1 : mutOps(i, 1)
          a = round(rand * (popSize - 1) + 1);
          c1 = feval(deblank(mutFNs(i, :)), endPop(a, :), bounds, [gen, mutOps(i, :)]);
          if c1(1 : numVar) == endPop(a, (1 : numVar)) 
              c1(xZomeLength) = endPop(a, xZomeLength);
          else
              eval(e1str);
          end
          endPop(a, :) = c1;
      end
    end

%%  运行遗传算子的概率模型
  else 
    for i = 1 : numXOvers
        xN = deblank(xOverFNs(i, :));
        cp = find((rand(popSize, 1) < xOverOps(i, 1)) == 1);

        if rem(size(cp, 1), 2) 
            cp = cp(1 : (size(cp, 1) - 1)); 
        end
        cp = reshape(cp, size(cp, 1) / 2, 2);

        for j = 1 : size(cp, 1)
            a = cp(j, 1); 
            b = cp(j, 2); 
            [endPop(a, :), endPop(b, :)] = feval(xN, endPop(a, :), endPop(b, :), ...
                bounds, [gen, xOverOps(i, :)]);
        end
    end

    for i = 1 : numMuts
        mN = deblank(mutFNs(i, :));
        for j = 1 : popSize
            endPop(j, :) = feval(mN, endPop(j, :), bounds, [gen, mutOps(i, :)]);
            eval(e1str);
        end
    end

  end
  
  %  更新记录
  gen = gen + 1;
  done = feval(termFN, [gen, termOps], bPop, endPop); % See if the ga is done
  startPop = endPop; 			                      % Swap the populations
  [~, bindx] = min(startPop(:, xZomeLength));         % Keep the best solution
  startPop(bindx, :) = best; 		                  % replace it with the worst
  
end
[bval, bindx] = max(startPop(:, xZomeLength));

%%  显示结果
if display 
  fprintf(1, '\n%d %f\n', gen, bval);	  
end

%%  二进制编码
x = startPop(bindx, :);
if opts(2) == 0
  x = b2f(x, bounds,bits);
  bPop(bFoundIn, :) = [gen, b2f(startPop(bindx, 1 : numVar), bounds, bits)...
      startPop(bindx, xZomeLength)];
else
  bPop(bFoundIn, :) = [gen, startPop(bindx, :)];
end

%%  赋值
if collectTrace
  traceInfo(gen, 1) = gen; 		                      % 当前迭代次数
  traceInfo(gen, 2) = startPop(bindx, xZomeLength);   % 最佳适应度
  traceInfo(gen, 3) = mean(startPop(:, xZomeLength)); % 平均适应度
end

4.4 gabpEval.m

function [sol, val] = gabpEval(sol, ~)

%%  解码适应度值
val = gadecod(sol);

4.5 initializega.m

function pop = initializega(num, bounds, evalFN, evalOps, options)

%%  种群初始化
%    initializega creates a matrix of random numbers with 
%    a number of rows equal to the populationSize and a number
%    columns equal to the number of rows in bounds plus 1 for
%    the f(x) value which is found by applying the evalFN.
%    This is used by the ga to create the population if it
%    is not supplied.
%
% pop            - the initial, evaluated, random population 
% populatoinSize - the size of the population, i.e. the number to create
% variableBounds - a matrix which contains the bounds of each variable, i.e.
%                  [var1_high var1_low; var2_high var2_low; ....]
% evalFN         - the evaluation fn, usually the name of the .m file for 
%                  evaluation
% evalOps        - any options to be passed to the eval function defaults []
% options        - options to the initialize function, ie. 
%                  [type prec] where eps is the epsilon value 
%                  and the second option is 1 for float and 0 for binary, 
%                  prec is the precision of the variables defaults [1e-6 1]

%%  参数初始化
if nargin < 5
  options = [1e-6, 1];
end
if nargin < 4
  evalOps = [];
end

%%  编码方式
if any(evalFN < 48)    % M文件
  if options(2) == 1   % 浮点数编码
    estr = ['x=pop(i,1); pop(i,xZomeLength)=', evalFN ';'];  
  else                 % 二进制编码
    estr = ['x=b2f(pop(i,:),bounds,bits); pop(i,xZomeLength)=', evalFN ';']; 
  end
else                   % 非M文件
  if options(2) == 1   % 浮点数编码
    estr = ['[ pop(i,:) pop(i,xZomeLength)]=' evalFN '(pop(i,:),[0 evalOps]);']; 
  else                 % 二进制编码
    estr = ['x=b2f(pop(i,:),bounds,bits);[x v]=' evalFN ...
	'(x,[0 evalOps]); pop(i,:)=[f2b(x,bounds,bits) v];'];  
  end
end

%%  参数设置 
numVars = size(bounds, 1); 		           % 变量数
rng     = (bounds(:, 2) - bounds(:, 1))';  % 可变范围

%%  编码方式
if options(2) == 1               % 二进制编码
  xZomeLength = numVars + 1; 	 % 字符串的长度是 numVar + fit
  pop = zeros(num, xZomeLength); % 分配新种群
  pop(:, 1 : numVars) = (ones(num, 1) * rng) .* (rand(num, numVars)) + ...
    (ones(num, 1) * bounds(:, 1)');
else                             % 浮点数编码
  bits = calcbits(bounds, options(1));
  pop = round(rand(num, sum(bits) + 1));
end

%%  运行文件
for i = 1 : num
  eval(estr);
end

4.6 maxGenTerm.m

function done = maxGenTerm(ops, ~, ~)
% 返回 1,即当达到 maximal_generation 时终止 GA。
%
% ops    - a vector of options [current_gen maximum_generation]
% bPop   - a matrix of best solutions [generation_found solution_string]
% endPop - the current generation of solutions

%%  
currentGen = ops(1);
maxGen     = ops(2);
done       = currentGen >= maxGen; 

4.7 nonUnifMutation.m

function parent = nonUnifMutation(parent, bounds, Ops)

%%  非均匀突变基于非均匀概率分布改变父代的参数之一
% parent  - the first parent ( [solution string function value] )
% bounds  - the bounds matrix for the solution space
% Ops     - Options for nonUnifMutate[gen #NonUnifMutations maxGen b]

%%  相关参数设置
cg = Ops(1); 				              % 当前这一代
mg = Ops(3);                              % 最大代数
bm = Ops(4);                              % 形状参数
numVar = size(parent, 2) - 1; 	          % 获取变量个数
mPoint = round(rand * (numVar - 1)) + 1;  % 选择一个变量从 1 到变量数随机变化
md = round(rand); 			              % 选择突变方向
if md 					                  % 向上限突变
  newValue = parent(mPoint) + delta(cg, mg, bounds(mPoint, 2) - parent(mPoint), bm);
else 					                  % 向下限突变
  newValue = parent(mPoint) - delta(cg, mg, parent(mPoint) - bounds(mPoint, 1), bm);
end
parent(mPoint) = newValue; 		          % 产生子代

4.8 normGeomSelect.m

function newPop = normGeomSelect(oldPop, options)

% NormGeomSelect 是一个基于归一化几何分布的排序选择函数。

% newPop  - the new population selected from the oldPop
% oldPop  - the current population
% options - options to normGeomSelect [gen probability_of_selecting_best]

%%  交叉选择排序
q = options(2); 				    % 选择最佳的概率
e = size(oldPop, 2); 			    % xZome 的长度,即 numvars + fit
n = size(oldPop, 1);  		        % 种群数目
newPop = zeros(n, e); 		        % 为返回 pop 分配空间
fit = zeros(n, 1); 		            % 为选择概率分配空间
x = zeros(n,2); 			        % rank和id的排序列表
x(:, 1) = (n : -1 : 1)'; 	        % 要知道它是什么元素
[~, x(:, 2)] = sort(oldPop(:, e));  % 排序后获取索引

%%  相关参数
r = q / (1 - (1 - q) ^ n); 			            % 归一化分布,q 素数
fit(x(:, 2)) = r * (1 - q) .^ (x(:, 1) - 1); 	% 生成选择概率
fit = cumsum(fit); 			                    % 计算累积概率

%% 
rNums = sort(rand(n, 1)); 			            % 生成 n 个排序的随机数
fitIn = 1;                                      % 初始化循环控制
newIn = 1; 			                            % 初始化循环控制
while newIn <= n 				                % 获得 n 个新个体
  if(rNums(newIn) < fit(fitIn)) 		
    newPop(newIn, :) = oldPop(fitIn, :); 	    % 选择 fitIn 个人
    newIn = newIn + 1; 			                % 寻找下一个新人
  else
    fitIn = fitIn + 1; 			                % 着眼于下一个潜在选择
  end
end

4.9 parse.m

function x = parse(inStr)

% parse 是一个函数,它接收一个由空格分隔的文本组成的字符串向量,
% 并将各个字符串项解析为一个 n 项矩阵,每个字符串一行。

% x     - the return matrix of strings
% inStr - the blank separated string vector

%%  切割字符串
strLen = size(inStr, 2);
x = blanks(strLen);
wordCount = 1;
last = 0;
for i = 1 : strLen
  if inStr(i) == ' '
    wordCount = wordCount + 1;
    x(wordCount, :) = blanks(strLen);
    last = i;
  else
    x(wordCount, i - last) = inStr(i);
  end
end

4.10 gadecod.m

function [val, W1, B1, W2, B2] = gadecod(x)

%%  读取主空间变量
S1 = evalin('base', 'S1');             % 读取隐藏层神经元个数
net = evalin('base', 'net');           % 读取网络参数
p_train = evalin('base', 'p_train');   % 读取输入数据
t_train = evalin('base', 't_train');   % 读取输出数据

%%  参数初始化
R2 = size(p_train, 1);                 % 输入节点数 
S2 = size(t_train, 1);                 % 输出节点数

%%  输入权重编码
for i = 1 : S1
    for k = 1 : R2
        W1(i, k) = x(R2 * (i - 1) + k);
    end
end

%%  输出权重编码
for i = 1 : S2
    for k = 1 : S1
        W2(i, k) = x(S1 * (i - 1) + k + R2 * S1);
    end
end

%%  隐层偏置编码
for i = 1 : S1
    B1(i, 1) = x((R2 * S1 + S1 * S2) + i);
end

%%  输出偏置编码
for i = 1 : S2
    B2(i, 1) = x((R2 * S1 + S1 * S2 + S1) + i);
end

%%  赋值并计算
net.IW{1, 1} = W1;
net.LW{2, 1} = W2;
net.b{1}     = B1;
net.b{2}     = B2;

%%  模型训练
net.trainParam.showWindow = 0;      % 关闭训练窗口
net = train(net, p_train, t_train);

%%  仿真测试
t_sim1 = sim(net, p_train);

%%  计算适应度值
val =  1 ./ (sqrt(sum((t_sim1 - t_train).^2) ./ length(t_sim1)));

4.11 main.m

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  添加路径
addpath('goat\')

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  建立模型
S1 = 5;           %  隐藏层节点个数                
net = newff(p_train, t_train, S1);

%%  设置参数
net.trainParam.epochs = 1000;        % 最大迭代次数 
net.trainParam.goal   = 1e-6;        % 设置误差阈值
net.trainParam.lr     = 0.01;        % 学习率

%%  设置优化参数
gen = 50;                       % 遗传代数
pop_num = 5;                    % 种群规模
S = size(p_train, 1) * S1 + S1 * size(t_train, 1) + S1 + size(t_train, 1);
                                % 优化参数个数
bounds = ones(S, 1) * [-1, 1];  % 优化变量边界

%%  初始化种群
prec = [1e-6, 1];               % epslin 为1e-6, 实数编码
normGeomSelect = 0.09;          % 选择函数的参数
arithXover = 2;                 % 交叉函数的参数
nonUnifMutation = [2 gen 3];    % 变异函数的参数

initPpp = initializega(pop_num, bounds, 'gabpEval', [], prec);  

%%  优化算法
[Bestpop, endPop, bPop, trace] = ga(bounds, 'gabpEval', [], initPpp, [prec, 0], 'maxGenTerm', gen,...
                           'normGeomSelect', normGeomSelect, 'arithXover', arithXover, ...
                           'nonUnifMutation', nonUnifMutation);

%%  获取最优参数
[val, W1, B1, W2, B2] = gadecod(Bestpop);

%%  参数赋值
net.IW{1, 1} = W1;
net.LW{2, 1} = W2;
net.b{1}     = B1;
net.b{2}     = B2;

%%  模型训练
net.trainParam.showWindow = 1;       % 打开训练窗口
net = train(net, p_train, t_train);  % 训练模型

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  优化迭代曲线
figure
plot(trace(:, 1), 1 ./ trace(:, 2), 'LineWidth', 1.5);
xlabel('迭代次数');
ylabel('适应度值');
string = {'适应度变化曲线'};
title(string)
grid on

%%  绘图
figure
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%%  绘制散点图
sz = 25;
c = 'b';

figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')

figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

5.运行结果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/43726.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux从入门到精通】进程的控制(进程退出+进程等待)

本篇文章主要讲述的是进程的退出和进程等待。希望本篇文章的内容会对你有所帮助。 文章目录 一、fork创建子进程 1、1 在创建子进程中操作系统的作用 1、2 写时拷贝 二、进程终止 2、1 常见的进程退出 2、2 进程的退出码 2、2、1 运行结果正确实例 2、2、2 运行结果不正确实例…

怎样原生制作lis的CentOS容器镜像

本文介绍从一个空白的裸机CentOS自己构造检验允许的docker环境。来达到运行环境的高度定制&#xff0c;而不是只能依赖VS或者微软或者数据库厂商提供的镜像当做基础制作。更容易理解基础原理。最终输出产物为lisnew.tar&#xff0c;一个开箱即用的lis运行环境。 制作的整个过程…

1 快速构建mybatis项目

1.1 使用Maven的quickstart框架 注意是不出现w的quickstart&#xff1a; 1.2 加入依赖 <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.11</version><scope>test</s…

AIGC分享交流平台、GPT-4、GPT实时联网、Claude

拥有无限畅谈的AI个人助理&#xff0c;提高效率和创造力&#xff0c;引领未来的智能生活&#xff1b; 不仅承载着最前沿的科技理念&#xff0c;更集成了对人工智能可能性的深度理解。 已支持基于GPT、Claude等主流大模型的对话内容生成、支持GPT联网查询实时信息&#xff1b;基…

软件外包开发代码管理工具

在多人开发的软件中必然需要软件代码管理工具来协助&#xff0c;软件代码管理工具主要包括版本控制系统和代码仓库。以下是一些常见的软件代码管理工具&#xff0c;以及它们的一些主要特点&#xff0c;这些代码管理工具根据实际需求和开发团队的大小、目标和需求&#xff0c;都…

Jenkins环境配置篇-邮件发送

作为持续集成的利器Jenkins已经得到了广泛地应用&#xff0c;仅仅作为一个工具&#xff0c;Jenkins已然有了自己的生态圈&#xff0c;支持其的plugin更是超过1300。在实际中如何使用以及如何更好地使用jenkins&#xff0c;一直是大家在实践并讨论的。本系列文章将会从如何使用j…

HTTP中GET请求和POST请求的区别

前言 HTTP&#xff08;超文本传输协议&#xff09;是用于在 Web 浏览器和 Web 服务器之间传输数据的协议。在 HTTP 中&#xff0c;GET 和 POST 是两种常见的请求方法。一般我们在浏览器输入一个网址访问网站都是 GET 请求&#xff1b;在 FORM 表单中&#xff0c;可以通过设置 …

文件被识别为病毒,被删除,如何解决

我们的文件有时候有用&#xff0c;但是电脑却识别为病毒&#xff0c;直接给我删除掉了&#xff0c;这让人是真的很XX&#xff0c;那该怎么办呐。 我最近用了这个方法很多次&#xff0c;蛮好用&#xff0c;分享给大家&#xff01; 1、先找到安全中心 2、找不到排除项 3、点击添…

详细总结Webpack5的配置和使用

打包工具 使用框架&#xff08;React、Vue&#xff09;&#xff0c;ES6 模块化语法&#xff0c;Less/Sass 等 CSS预处理器等语法进行开发的代码要想在浏览器运行必须经过编译成浏览器能识别的 JS、CSS 等语法&#xff0c;才能运行。 所以需要打包工具帮我们做完这些事。除此之…

面试 | 双法妙解压缩字符串【遍历统计 + 双指针】

一、题目描述 原题传送门 二、思路分析 首先我们来分析一下解决本题所需要的思路 题目的意思很简单&#xff0c;就是统计原本的字符串中的每个字符出现的次数&#xff0c;然后以【字符&#xff0c;出现的次数】这样的结构来字符串&#xff0c;以起到一个压缩的效果&#xff0c…

概率论和随机过程的学习和整理--番外16,N合1的合成问题的求平均个数,次数,阶数

目录 1 问题 2 用条件期望&#xff0c;求合成的次数 2.1 思路1 2.2 思路2 3 用条件期望&#xff0c;求合成的个数 3.1 令X表示用材料1往上合成时&#xff0c;合成材料2的个数 3.2 令Y表示用材料1往上合成时&#xff0c;合成材料3的个数 4 用条件期望&#xff0c;求合成…

【算法基础:数学知识】4.4 快速幂

文章目录 快速幂例题列表875. 快速幂⭐⭐⭐⭐⭐&#xff08;重要&#xff01;&#xff09;代码写法1——递归代码写法2——迭代递归写法 与 迭代写法的 对比 876. 快速幂求逆元&#x1f6b9;&#xff08;需要理解逆元的概念&#xff09;TODO乘法逆元介绍解法代码 快速幂 https…

[MySQL]MySQL用户管理

[MySQL]MySQL用户管理 文章目录 [MySQL]MySQL用户管理1. 用户的概念2. 用户信息3. 创建用户4. 修改用户密码5. 删除用户6. MySQL中的权限7. 给用户授权8. 回收权限 1. 用户的概念 MySQL中的用户分为超级用户&#xff08;root&#xff09;和普通用户。超级用户的操作是不受权限…

奇舞周刊第500期:TQL,巧用 CSS 实现动态线条 Loading 动画

记得点击文章末尾的“ 阅读原文 ”查看哟~ 下面先一起看下本期周刊 摘要 吧~ 奇舞推荐 ■ ■ ■ TQL&#xff0c;巧用 CSS 实现动态线条 Loading 动画 最近&#xff0c;群里有个很有意思的问题&#xff0c;使用 CSS 如何实现如下 Loading 效果&#xff1a; leaferjs&#xff0c…

4.3 Bootstrap CSS编码规范

文章目录 Bootstrap CSS编码规范语法声明顺序不要使用 import媒体查询&#xff08;Media query&#xff09;的位置带前缀的属性单行规则声明简写形式的属性声明Less 和 Sass 中的嵌套注释class 命名选择器代码组织编辑器配置 Bootstrap CSS编码规范 语法 用两个空格来代替制表…

Java方法重载和Java方法重写

Java方法重载 Java允许同一个类中定义多个同名方法&#xff0c;只要它们的形参列表不同即可。如果同一个类中包含了两个或两个以上方法名相同的方法&#xff0c;但形参列表不同&#xff0c;这种情况被称为方法重载&#xff08;overload&#xff09;。 例如&#xff0c;在 JDK …

【多模态】16、DetCLIP | 构建超大词汇字典来进行开放世界目标检测

论文&#xff1a;DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection 代码&#xff1a;无。。。 出处&#xff1a;NIPS2022 | 华为诺亚方舟 | 中山大学 | 香港科技大学 效果&#xff1a; 在 LVIS 的 1203 个类别上超越了 GLIP…

深入学习 Redis - 深挖经典数据类型之 list

目录 前言 一、list 类型 1.1、操作命令 lpush / rpush&#xff08;插入元素&#xff09; lrange&#xff08;查看范围元素&#xff09; lpushx / rpushx &#xff08;有约束的插入&#xff09; lpop / rpop&#xff08;头删尾删&#xff09; lindex&#xff08;获取下…

实现锂电池形状的数据可视化css+js

1.效果图 2.需求根据后端返回数据改变里面的高度 HTML&#xff1a; <div class"dianchichi"><div class"limian" id"divElementId"></div></div> css: .dianchichi {width: 84px;height: 146px;display: flex;justify-…

【Visual Studio】Qt 在其他 cpp 文件中调用操作 ui 界面控件

知识不是单独的&#xff0c;一定是成体系的。更多我的个人总结和相关经验可查阅这个专栏&#xff1a;Visual Studio。 还整了一个如何相互之间调用函数的文章&#xff0c;感兴趣可以看&#xff1a;【Visual Studio】Qt 在其他 cpp 文件中调用主工程下文件中的函数。 文章目录 …