基于 EfficientNetV2 实现判别MNIST 手写模型分类

pytorch深度学习项目实战100例 的学习记录

我的环境:

白票大王: google colab

用其他的话,其实实现也行,但是让小白来重环境来开始安装的话,浪费时间

论文速读

EfficientNetV2是由 Google Research,Brain Team发布在2021 ICML的一篇论文,它结合使用NAS和缩放,优化训练速度和参数效率。并且模型中使用新操作(如 Fused-MBConv)在搜索空间中进行搜索。EfficientNetV2 模型比EfficientNetV1的训练速度快得多,同时体积小 6.8 倍。

在这里插入图片描述
理解和提高 EfficientNetV1 的训练效率

  1. 使用非常大的图像尺寸进行训练很慢( Training with very large image sizes is slow)
    在这里插入图片描述

  2. Depth-wise卷积在模型的早期层执行缓慢但在后期层是有效的(Depthwise convolutions are slow in early layers but effective in later stages)

在这里插入图片描述
MBConv 和 Fused-MBConv 的结构

Fused-MBConv 逐渐将 EfficientNet-B4 中的原始 MBConv 替换为 Fused-MBConv。

但是不是所有替换都有效果
在这里插入图片描述

结构图
在这里插入图片描述
EfficientNetV2 与 EfficientNetV1有几个主要区别:

  • EfficientNetV2 在早期层中广泛使用了 MBConv 和新添加的 fused-MBConv。
  • EfficientNetV2 更喜欢 MBConv 的较小扩展比,因为较小的扩展比往往具有较少的内存访问开销。
  • EfficientNetV2 更喜欢较小的核大小( 3×3),但它增加了更多层来补偿较小内核大小导致的感受野减少。
  • EfficientNetV2 完全移除了原始 EfficientNet 中的最后一个 stride-1 阶段,这可能是由于其较大的参数大小和内存访问开销。

训练
(1) 我们将最大推理图像大小限制为 480,因为非常大的图像通常会导致昂贵的内存和训练速度开销; (2) 作为启发式,我们还逐渐将更多的层添加到后期(例如表 4 中的第 5 阶段和第 6 阶段),以增加网络容量而不会增加太多运行时开销。
在这里插入图片描述
当图像尺寸较小增广较弱时模型的表现最好; 但是对于更大的图像,它在更强的增广的情况下表现更好。从小图像尺寸和弱正则化(epoch = 1)开始,然后随着更大的图像尺寸和更强的正则化逐渐增加学习难度:更大的 Dropout 率、RandAugment 幅度和混合比

在这里插入图片描述

因为阿光的项目中用了mindspore,而colab上面运行不了TT

from collections import OrderedDict
from functools import partial

import mindspore.nn as nn
import mindspore.numpy as mnp
import mindspore.ops as ops

import argparse
import os

import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore import Model
from mindspore import context
from mindspore import dtype as mstype
from mindspore.dataset.vision import Inter
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig


def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    #     random_tensor = keep_prob + Tensor(torch.rand(shape).numpy())
    stdnormal = ops.StandardNormal(seed=1)
    random_tensor = keep_prob + stdnormal(shape)
    #     random_tensor.floor_()  # binarize
    random_tensor = mnp.floor(random_tensor)
    output = mnp.divide(x, keep_prob) * random_tensor
    #     output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Cell):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def construct(self, x):
        return drop_path(x, self.drop_prob, self.training)


class ConvBNAct(nn.Cell):
    def __init__(self,
                 in_planes: int,
                 out_planes: int,
                 kernel_size: int = 3,
                 stride: int = 1,
                 groups: int = 1,
                 norm_layer=None,
                 activation_layer=None):
        super(ConvBNAct, self).__init__()

        #         self.activation=activation_layer
        padding = (kernel_size - 1) // 2
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if activation_layer is None:
            activation_layer = nn.ReLU  # alias Swish  (torch>=1.7)

        self.conv = nn.Conv2d(in_channels=in_planes,
                              out_channels=out_planes,
                              kernel_size=kernel_size,
                              stride=stride,
                              # padding=padding,
                              group=groups,
                              has_bias=False)

        self.bn = norm_layer(out_planes)

        #         if self.activation is not no':
        self.act = activation_layer()

    def construct(self, x):
        result = self.conv(x)
        result = self.bn(result)
        #         if self.activation is not 'no':
        result = self.act(result)

        return result


class SqueezeExcite(nn.Cell):
    def __init__(self,
                 input_c: int,  # block input channel
                 expand_c: int,  # block expand channel
                 se_ratio: float = 0.25):
        super(SqueezeExcite, self).__init__()
        squeeze_c = int(input_c * se_ratio)
        self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1, pad_mode='valid')
        self.act1 = nn.ReLU()  # alias Swish
        self.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1, pad_mode='valid')
        self.act2 = nn.Sigmoid()

    def construct(self, x):
        scale = x.mean((2, 3), keep_dims=True)
        scale = self.conv_reduce(scale)
        scale = self.act1(scale)
        scale = self.conv_expand(scale)
        scale = self.act2(scale)
        return scale * x


class MBConv(nn.Cell):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer):
        super(MBConv, self).__init__()

        if stride not in [1, 2]:
            raise ValueError("illegal stride value.")

        self.has_shortcut = (stride == 1 and input_c == out_c)

        activation_layer = nn.ReLU  # alias Swish
        expanded_c = input_c * expand_ratio

        # 在EfficientNetV2中,MBConv中不存在expansion=1的情况所以conv_pw肯定存在
        assert expand_ratio != 1
        # Point-wise expansion
        self.expand_conv = ConvBNAct(input_c,
                                     expanded_c,
                                     kernel_size=1,
                                     norm_layer=norm_layer,
                                     activation_layer=activation_layer)

        # Depth-wise convolution
        self.dwconv = ConvBNAct(expanded_c,
                                expanded_c,
                                kernel_size=kernel_size,
                                stride=stride,
                                groups=expanded_c,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer)

        #         self.se = SqueezeExcite(input_c, expanded_c, se_ratio) if se_ratio > 0 else ops.Identity
        self.se = SqueezeExcite(input_c, expanded_c, se_ratio) if se_ratio > 0 else None

        # Point-wise linear projection
        self.project_conv = ConvBNAct(expanded_c,
                                      out_planes=out_c,
                                      kernel_size=1,
                                      norm_layer=norm_layer,
                                      #                                       activation_layer=ops.Identity
                                      )  # 注意这里没有激活函数,所有传入Identity

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def construct(self, x):
        result = self.expand_conv(x)
        result = self.dwconv(result)
        #         if self.se != 'no':
        if self.se is not None:
            result = self.se(result)
        result = self.project_conv(result)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)
            result += x

        return result


class FusedMBConv(nn.Cell):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer):
        super(FusedMBConv, self).__init__()

        assert stride in [1, 2]
        assert se_ratio == 0

        self.has_shortcut = stride == 1 and input_c == out_c
        self.drop_rate = drop_rate

        self.has_expansion = expand_ratio != 1

        activation_layer = nn.ReLU  # alias Swish
        expanded_c = input_c * expand_ratio

        # 只有当expand ratio不等于1时才有expand conv
        if self.has_expansion:
            # Expansion convolution
            self.expand_conv = ConvBNAct(input_c,
                                         expanded_c,
                                         kernel_size=kernel_size,
                                         stride=stride,
                                         norm_layer=norm_layer,
                                         activation_layer=activation_layer)

            self.project_conv = ConvBNAct(expanded_c,
                                          out_c,
                                          kernel_size=1,
                                          norm_layer=norm_layer,
                                          #                                           activation_layer=ops.Identity
                                          )  # 注意没有激活函数
        else:
            # 当只有project_conv时的情况
            self.project_conv = ConvBNAct(input_c,
                                          out_c,
                                          kernel_size=kernel_size,
                                          stride=stride,
                                          norm_layer=norm_layer,
                                          activation_layer=activation_layer)  # 注意有激活函数

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def construct(self, x):
        if self.has_expansion:
            result = self.expand_conv(x)
            result = self.project_conv(result)
        else:
            result = self.project_conv(x)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)
            result += x

        return result


class EfficientNetV2(nn.Cell):
    def __init__(self,
                 model_cnf: list,
                 num_classes: int = 10,
                 num_features: int = 128,
                 dropout_rate: float = 0.2,
                 drop_connect_rate: float = 0.2):
        super(EfficientNetV2, self).__init__()

        for cnf in model_cnf:
            assert len(cnf) == 8

        norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.1)

        stem_filter_num = model_cnf[0][4]

        self.stem = ConvBNAct(1,
                              stem_filter_num,
                              kernel_size=3,
                              stride=2,
                              norm_layer=norm_layer)  # 激活函数默认是SiLU

        total_blocks = sum([i[0] for i in model_cnf])
        block_id = 0
        blocks = []
        for cnf in model_cnf:
            repeats = cnf[0]
            op = FusedMBConv if cnf[-2] == 0 else MBConv
            for i in range(repeats):
                blocks.append(op(kernel_size=cnf[1],
                                 input_c=cnf[4] if i == 0 else cnf[5],
                                 out_c=cnf[5],
                                 expand_ratio=cnf[3],
                                 stride=cnf[2] if i == 0 else 1,
                                 se_ratio=cnf[-1],
                                 drop_rate=drop_connect_rate * block_id / total_blocks,
                                 norm_layer=norm_layer))
                block_id += 1
        self.blocks = nn.SequentialCell(*blocks)

        head_input_c = model_cnf[-1][-3]
        head = OrderedDict()

        head.update({"project_conv": ConvBNAct(head_input_c,
                                               num_features,
                                               kernel_size=1,
                                               norm_layer=norm_layer)})  # 激活函数默认是SiLU

        #         self.adaptive=ops.AdaptiveAvgPool2D((None,1))
        #         head.update({"avgpool": ops.AdaptiveAvgPool2D(None,1)})
        head.update({"flatten": nn.Flatten()})

        if dropout_rate > 0:
            head.update({"dropout": nn.Dropout(keep_prob=dropout_rate)})
        head.update({"classifier": nn.Dense(num_features, num_classes)})

        self.head = nn.SequentialCell(head)

        self.avgpool = nn.AvgPool2d(kernel_size=(10, 12), pad_mode='valid')


    def construct(self, x):
        x = self.stem(x)
        x = self.blocks(x)
        x = self.avgpool(x)
        #         x = self.adaptive(x)
        x = self.head(x)
        return x


def efficientnetv2_s(num_classes: int = 10):
    model_config = [[2, 3, 1, 1, 24, 24, 0, 0],
                    [4, 3, 2, 4, 24, 48, 0, 0],
                    [4, 3, 2, 4, 48, 64, 0, 0],
                    [6, 3, 2, 4, 64, 128, 1, 0.25],
                    [9, 3, 1, 6, 128, 160, 1, 0.25],
                    [15, 3, 2, 6, 160, 256, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.2)
    return model

def create_dataset(data_path, batch_size=32, repeat_size=1,
                   num_parallel_workers=1):
    # 定义数据集
    mnist_ds = ds.MnistDataset(data_path)
    resize_height, resize_width = 300, 384

    # 定义所需要操作的map映射
    resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
    hwc2chw_op = CV.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)
    type_cast_op_image = C.TypeCast(mstype.float32)

    # 使用map映射函数,将数据操作应用到数据集
    mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(operations=type_cast_op_image, input_columns="image",
                            num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)

    # 进行shuffle、batch操作
    buffer_size = 1000
    mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
    mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)

    return mnist_ds


def train_net(args, model, batch_size, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
    ds_train = create_dataset(os.path.join(data_path, 'train'), batch_size, repeat_size)
    model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(10)], dataset_sink_mode=sink_mode)


def test_net(network, model, data_path):
    ds_eval = create_dataset(os.path.join(data_path, 'test'))
    acc = model.eval(ds_eval, dataset_sink_mode=False)
    print('{}'.format(acc))

net = efficientnetv2_s(num_classes=10)

parser = argparse.ArgumentParser(description='MindSpore Example')
parser.add_argument('--device_target', type=str, default="CPU", choices=['Ascend', 'GPU', 'CPU'])

args = parser.parse_known_args()[0]
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)

# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')

# 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)

# 设置模型保存参数
config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix='checkpoint_efficientvs', config=config_ck)

train_epoch = 10
# mnist_path = './datasets/cifar-10-batches-bin'
mnist_path = './datasets/MNIST_Data'
dataset_size = 1
batch_size = 16
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, batch_size, train_epoch, mnist_path, dataset_size, ckpoint, False)
test_net(net, model, mnist_path)

自己重新写了pytorch的版本,来重新训练

网路结构

import copy
from functools import partial
from collections import OrderedDict

import torch
from torch import nn



def get_efficientnet_v2_structure(model_name):
    if 'efficientnet_v2_s' in model_name:
        return [
            # e k  s  in  out xN  se   fused
            (1, 3, 1, 24, 24, 2, False, True),
            (4, 3, 2, 24, 48, 4, False, True),
            (4, 3, 2, 48, 64, 4, False, True),
            (4, 3, 2, 64, 128, 6, True, False),
            (6, 3, 1, 128, 160, 9, True, False),
            (6, 3, 2, 160, 256, 15, True, False),
        ]
    elif 'efficientnet_v2_m' in model_name:
        return [
            # e k  s  in  out xN  se   fused
            (1, 3, 1, 24, 24, 3, False, True),
            (4, 3, 2, 24, 48, 5, False, True),
            (4, 3, 2, 48, 80, 5, False, True),
            (4, 3, 2, 80, 160, 7, True, False),
            (6, 3, 1, 160, 176, 14, True, False),
            (6, 3, 2, 176, 304, 18, True, False),
            (6, 3, 1, 304, 512, 5, True, False),
        ]
    elif 'efficientnet_v2_l' in model_name:
        return [
            # e k  s  in  out xN  se   fused
            (1, 3, 1, 32, 32, 4, False, True),
            (4, 3, 2, 32, 64, 7, False, True),
            (4, 3, 2, 64, 96, 7, False, True),
            (4, 3, 2, 96, 192, 10, True, False),
            (6, 3, 1, 192, 224, 19, True, False),
            (6, 3, 2, 224, 384, 25, True, False),
            (6, 3, 1, 384, 640, 7, True, False),
        ]
    elif 'efficientnet_v2_xl' in model_name:
        return [
            # e k  s  in  out xN  se   fused
            (1, 3, 1, 32, 32, 4, False, True),
            (4, 3, 2, 32, 64, 8, False, True),
            (4, 3, 2, 64, 96, 8, False, True),
            (4, 3, 2, 96, 192, 16, True, False),
            (6, 3, 1, 192, 256, 24, True, False),
            (6, 3, 2, 256, 512, 32, True, False),
            (6, 3, 1, 512, 640, 8, True, False),
        ]


class ConvBNAct(nn.Sequential):
    """Convolution-Normalization-Activation Module"""
    def __init__(self, in_channel, out_channel, kernel_size, stride, groups, norm_layer, act, conv_layer=nn.Conv2d):
        super(ConvBNAct, self).__init__(
            conv_layer(in_channel, out_channel, kernel_size, stride=stride, padding=(kernel_size-1)//2, groups=groups, bias=False),
            norm_layer(out_channel),
            act()
        )


class SEUnit(nn.Module):
    """Squeeze-Excitation Unit

    paper: https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper

    """
    def __init__(self, in_channel, reduction_ratio=4, act1=partial(nn.SiLU, inplace=True), act2=nn.Sigmoid):
        super(SEUnit, self).__init__()
        hidden_dim = in_channel // reduction_ratio
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc1 = nn.Conv2d(in_channel, hidden_dim, (1, 1), bias=True)
        self.fc2 = nn.Conv2d(hidden_dim, in_channel, (1, 1), bias=True)
        self.act1 = act1()
        self.act2 = act2()

    def forward(self, x):
        return x * self.act2(self.fc2(self.act1(self.fc1(self.avg_pool(x)))))


class StochasticDepth(nn.Module):
    """StochasticDepth

    paper: https://link.springer.com/chapter/10.1007/978-3-319-46493-0_39

    :arg
        - prob: Probability of dying
        - mode: "row" or "all". "row" means that each row survives with different probability
    """
    def __init__(self, prob, mode):
        super(StochasticDepth, self).__init__()
        self.prob = prob
        self.survival = 1.0 - prob
        self.mode = mode

    def forward(self, x):
        if self.prob == 0.0 or not self.training:
            return x
        else:
            shape = [x.size(0)] + [1] * (x.ndim - 1) if self.mode == 'row' else [1]
            return x * torch.empty(shape).bernoulli_(self.survival).div_(self.survival).to(x.device)


class MBConvConfig:
    """EfficientNet Building block configuration"""
    def __init__(self, expand_ratio: float, kernel: int, stride: int, in_ch: int, out_ch: int, layers: int,
                 use_se: bool, fused: bool, act=nn.SiLU, norm_layer=nn.BatchNorm2d):
        self.expand_ratio = expand_ratio
        self.kernel = kernel
        self.stride = stride
        self.in_ch = in_ch
        self.out_ch = out_ch
        self.num_layers = layers
        self.act = act
        self.norm_layer = norm_layer
        self.use_se = use_se
        self.fused = fused

    @staticmethod
    def adjust_channels(channel, factor, divisible=8):
        new_channel = channel * factor
        divisible_channel = max(divisible, (int(new_channel + divisible / 2) // divisible) * divisible)
        divisible_channel += divisible if divisible_channel < 0.9 * new_channel else 0
        return divisible_channel


class MBConv(nn.Module):
    """EfficientNet main building blocks

    :arg
        - c: MBConvConfig instance
        - sd_prob: stochastic path probability
    """
    def __init__(self, c, sd_prob=0.0):
        super(MBConv, self).__init__()
        inter_channel = c.adjust_channels(c.in_ch, c.expand_ratio)
        block = []

        if c.expand_ratio == 1:
            block.append(('fused', ConvBNAct(c.in_ch, inter_channel, c.kernel, c.stride, 1, c.norm_layer, c.act)))
        elif c.fused:
            block.append(('fused', ConvBNAct(c.in_ch, inter_channel, c.kernel, c.stride, 1, c.norm_layer, c.act)))
            block.append(('fused_point_wise', ConvBNAct(inter_channel, c.out_ch, 1, 1, 1, c.norm_layer, nn.Identity)))
        else:
            block.append(('linear_bottleneck', ConvBNAct(c.in_ch, inter_channel, 1, 1, 1, c.norm_layer, c.act)))
            block.append(('depth_wise', ConvBNAct(inter_channel, inter_channel, c.kernel, c.stride, inter_channel, c.norm_layer, c.act)))
            block.append(('se', SEUnit(inter_channel, 4 * c.expand_ratio)))
            block.append(('point_wise', ConvBNAct(inter_channel, c.out_ch, 1, 1, 1, c.norm_layer, nn.Identity)))

        self.block = nn.Sequential(OrderedDict(block))
        self.use_skip_connection = c.stride == 1 and c.in_ch == c.out_ch
        self.stochastic_path = StochasticDepth(sd_prob, "row")

    def forward(self, x):
        out = self.block(x)
        if self.use_skip_connection:
            out = x + self.stochastic_path(out)
        return out


class EfficientNetV2(nn.Module):
    """Pytorch Implementation of EfficientNetV2

    paper: https://arxiv.org/abs/2104.00298

    - reference 1 (pytorch): https://github.com/d-li14/efficientnetv2.pytorch/blob/main/effnetv2.py
    - reference 2 (official): https://github.com/google/automl/blob/master/efficientnetv2/effnetv2_configs.py

    :arg
        - layer_infos: list of MBConvConfig
        - out_channels: bottleneck channel
        - nlcass: number of class
        - dropout: dropout probability before classifier layer
        - stochastic depth: stochastic depth probability
    """
    def __init__(self, layer_infos, out_channels=1280, nclass=0, dropout=0.2, stochastic_depth=0.0,
                 block=MBConv, act_layer=nn.SiLU, norm_layer=nn.BatchNorm2d):
        super(EfficientNetV2, self).__init__()
        self.layer_infos = layer_infos
        self.norm_layer = norm_layer
        self.act = act_layer

        self.in_channel = layer_infos[0].in_ch
        self.final_stage_channel = layer_infos[-1].out_ch
        self.out_channels = out_channels

        self.cur_block = 0
        self.num_block = sum(stage.num_layers for stage in layer_infos)
        self.stochastic_depth = stochastic_depth

        self.stem = ConvBNAct(3, self.in_channel, 3, 2, 1, self.norm_layer, self.act)
        self.blocks = nn.Sequential(*self.make_stages(layer_infos, block))
        self.head = nn.Sequential(OrderedDict([
            ('bottleneck', ConvBNAct(self.final_stage_channel, out_channels, 1, 1, 1, self.norm_layer, self.act)),
            ('avgpool', nn.AdaptiveAvgPool2d((1, 1))),
            ('flatten', nn.Flatten()),
            ('dropout', nn.Dropout(p=dropout, inplace=True)),
            ('classifier', nn.Linear(out_channels, nclass) if nclass else nn.Identity())
        ]))

    def make_stages(self, layer_infos, block):
        return [layer for layer_info in layer_infos for layer in self.make_layers(copy.copy(layer_info), block)]

    def make_layers(self, layer_info, block):
        layers = []
        for i in range(layer_info.num_layers):
            layers.append(block(layer_info, sd_prob=self.get_sd_prob()))
            layer_info.in_ch = layer_info.out_ch
            layer_info.stride = 1
        return layers

    def get_sd_prob(self):
        sd_prob = self.stochastic_depth * (self.cur_block / self.num_block)
        self.cur_block += 1
        return sd_prob

    def forward(self, x):
        return self.head(self.blocks(self.stem(x)))

    def change_dropout_rate(self, p):
        self.head[-2] = nn.Dropout(p=p, inplace=True)


def efficientnet_v2_init(model):
    for m in model.modules():
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out')
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
            nn.init.ones_(m.weight)
            nn.init.zeros_(m.bias)
        elif isinstance(m, nn.Linear):
            nn.init.normal_(m.weight, mean=0.0, std=0.01)
            nn.init.zeros_(m.bias)


def get_efficientnet_v2(model_name, pretrained, nclass=0, dropout=0.1, stochastic_depth=0.2, **kwargs):
    residual_config = [MBConvConfig(*layer_config) for layer_config in get_efficientnet_v2_structure(model_name)]
    model = EfficientNetV2(residual_config, 1280, nclass, dropout=dropout, stochastic_depth=stochastic_depth, block=MBConv, act_layer=nn.SiLU)
    efficientnet_v2_init(model)

    return model

调用EfficientNet_V2_S的结构

# 获取EfficientNet V2 S的结构配置
model_name = 'efficientnet_v2_s'
pretrained = False  # Assuming custom implementation without pretrained weights
nclass = 10  # For MNIST
dropout = 0.1
stochastic_depth = 0.2

model = get_efficientnet_v2(model_name, pretrained, nclass, dropout, stochastic_depth)

调用torchvision 的MNIST数据集

import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

transform = transforms.Compose([
    transforms.Resize((224, 224)),  # Resize to match EfficientNet's expected input
    transforms.Grayscale(num_output_channels=3),  # Convert to 3-channel RGB
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # Normalize for 3 channels
])

train_dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)


训练和优化器

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
epochs =100
# Training loop
model.train()
for epoch in range(epochs):
    for images, labels in train_loader:
        images, labels = images.to(device), labels.to(device)
        
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    print(f"Epoch {epoch+1}, Loss: {loss.item()}")

测试

def test(model, device, test_loader, criterion):
    model.eval()  # Set the model to evaluation mode
    test_loss = 0
    correct = 0
    with torch.no_grad():  # No need to track gradients for validation
        for images, labels in test_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            test_loss += criterion(outputs, labels).item()  # Sum up batch loss
            pred = outputs.argmax(dim=1, keepdim=True)  # Get the index

代码审批过后上传,记得点赞和收藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/435714.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(3)(3.3) MAVLink高延迟协议

文章目录 前言 1 配置 2 说明 3 消息说明 前言 ArduPilot 支持 MAVLink 高延迟协议(MAVLink High Latency)。该协议专为卫星或 LoRA 等低带宽或高成本链路而设计。 在此协议中&#xff0c;每 5s 只发送一次 HIGH_LATENCY2 MAVLink 信息。对 MAVLink 命令或请求&#xff08…

Java常用类库:Math类

在Java编程语言中&#xff0c;java.lang.Math类提供了一系列用于执行基本数学运算的静态方法。这些方法允许你执行各种数学计算&#xff0c;如三角函数、指数函数、对数函数、取整函数等。在本教程中&#xff0c;我们将介绍Math类的常用方法及其用法。 常用方法 以下是Math类…

小迪安全33WEB 攻防-通用漏洞文件上传中间件解析漏洞编辑器安全

#知识点&#xff1a; 1、中间件安全问题 2、中间件文件上传解析 3、Web 应用编辑器上传 编辑器也就是第三方插件&#xff0c;一般都是文件上传漏洞 #详细点&#xff1a; 1、检测层面&#xff1a;前端&#xff0c;后端等 2、检测内容&#xff1a;文件头&#xff0c;完…

linux安装ngnix

一、将nginx-1.20.1.tar.gz上传至linux服务器目录下 二、将nginx安装包解压到/usr/local目录下 tar -zxvf /home/local/nginx-1.20.1.tar.gz -C /usr/local/三、预先安装依赖 yum -y install pcre-devel yum -y install openssl openssl-devel yum -y install gcc gcc-c auto…

部署LVS负载均衡架构

目录 一、ipvsadm 工具 二、NAT模式下部署LVS负载均衡 1、部署NFS共享存储服务器 1.1 安装NFS软件 1.2 新建共享目录和站点文件 1.3 设置共享策略 2、部署节点服务器1 2.1 安装并启动nginx软件 2.2 挂载共享目录到网页站点目录 2.3 修改网关 3、部署节点服务器2 3.…

Python算法100例-3.7 高次方数的尾数

1.问题描述2.问题分析3.算法设计4.确定程序框架5.完整的程序 1&#xff0e;问题描述 求13的13次方的最后三位数。 2&#xff0e;问题分析 许多初学者看到本题最容易想到的方法就是&#xff1a;将13累乘13次后截取最后三位即可。但是计算机中存储的整数是有一定范围的&#…

视频扩散模型介绍 Video Diffusion Models Introduction

视频扩散模型介绍 Video Diffusion Models Introduction Diffusion 扩散模型中的一些概念DDPMDDIMCLIPLatent DiffusionStable DiifusionLoRADreamBoothControlNet 视频生成评估标准图片层面视频层面 前人的工作Make-A-VideoAlign your Latents 开源视频生成模型ModelScopeT2V&…

vant van-field 密码输入框小程序里隐藏、显示密码bug总结

老规矩先上效果图: vant 输入框组件 密码的隐藏与显示功能&#xff1a; 注: 用password属性控制密码的显示与隐藏 不要用type属性&#xff0c;type属性在真机上有时会没有效果 1、当然如果只用typepassword 不需要切换显示、隐藏也可以使用。 2、如果用到了密码的显示与…

pandas数据合并

import pandas as pd import numpy as np# 随机生成两个df df1 pd.DataFrame(np.random.randn(3,4),columns [A,B,C,D]) df2 pd.DataFrame(np.random.randn(2,3),columns [A,B,D])print(打印df1\n,df1) print(打印df2\n,df2)# 默认纵向合并 qh_df_z pd.concat([df1,df2]) …

掌握Nodejs高级图片压缩技巧提升web优化

掌握Nodejs高级图片压缩技巧提升web优化 在当今的数字时代,图像在网络开发中发挥着至关重要的作用。它们增强视觉吸引力、传达信息并吸引用户。然而,高质量的图像通常有一个显着的缺点——较大的文件大小会减慢网页加载时间。为了应对这一挑战并确保快速加载网站,掌握 Node…

高中信息技术教资学习

一、几种排序方法的基本思想 1、直接插入排序&#xff08;假设按照从小到大进行排序&#xff09; 默认第一个元素是有序的&#xff0c;从有序的元素末尾开始&#xff0c;与要插入的元素进行比较&#xff0c;如果要插入的元素比有序的末尾元素小的话&#xff0c;就将有序末尾元…

ChatGPT高效提问——说明提示技巧

ChatGPT高效提问——说明提示技巧 现在&#xff0c;让我们开始体验“说明提示技巧”&#xff08;IPT, Instructions Prompt Technique&#xff09;和如何用它生成来自ChatGPT的高质量的文本。说明提示技巧是一个通过向ChatGPT提供需要依据的具体的模型的说明来指导ChatGPT输出…

图神经网络实战(4)——基于Node2Vec改进嵌入质量

图神经网络实战&#xff08;4&#xff09;——基于Node2Vec改进嵌入质量 0. 前言1. Node2Vec 架构1.2 定义邻居1.2 在随机游走中引入偏向性1.3 实现有偏随机游走 2. 实现 Node2Vec小结系列链接 0. 前言 Node2Vec 是一种基于 DeepWalk 的架构&#xff0c;DeepWalk 主要由随机游…

Vue源码系列讲解——过滤器篇【三】(解析过滤器)

目录 1. 前言 2. 在何处解析过滤器 3. parseFilters函数分析 4. 小结 1. 前言 在上篇文章中我们说了&#xff0c;无论用户是以什么方式使用过滤器&#xff0c;终归是将解析器写在模板中&#xff0c;既然是在模板中&#xff0c;那它肯定就会被解析编译&#xff0c;通过解析用…

【ESP32 IDF快速入门】点亮第一个LED灯与流水灯

文章目录 前言一、有哪些工作模式&#xff1f;1.1 GPIO的详细介绍1.2 GPIO的内部框图输入模式输出部分 二、GPIO操作函数2.1 GPIO 汇总2.2 GPIO操作函数gpio_config配置引脚reset 引脚函数设置引脚电平选中对应引脚设置引脚的方向 2.3 点亮第一个灯 三、流水灯总结 前言 ESP32…

【Godot4.2】GDScript数组分类及类型化数组和紧缩数组概述

概述 GDScript的数组是一种很常用的数据类型。本文主要阐述一下GDScript数组分类&#xff0c;以及官方文档和大多数视频或教程较少提及的类型化数组和紧缩数组。 GDScript数组分类 通过反复查阅GDScript内置文档并进行细节比较&#xff0c;发现GDScript的数组&#xff0c;可…

Qt for WebAssembly : Application exit (SharedArrayBuffer is not defined)

用Qt开发 WebAssembly&#xff0c;放到nginx里面&#xff0c;用127.0.0.1访问没问题&#xff0c;用局域网IP访问就提示如下&#xff1a; 总结了以下两种解决办法&#xff1a; ①&#xff1a;配置 nginx http 头 [ 支持&#xff1a;WebAssembly Qt (single-threaded) ] ②&#…

关于 selinux 规则

1. 查看selinux状态 SELinux的状态&#xff1a; enforcing&#xff1a;强制&#xff0c;每个受限的进程都必然受限 permissive&#xff1a;允许&#xff0c;每个受限的进程违规操作不会被禁止&#xff0c;但会被记录于审计日志 disabled&#xff1a;禁用 相关命令&#xf…

ElevenLabs用AI为Sora文生视频模型配音 ,景联文科技提供高质量真人音频数据集助力生成逼真音效

随着Open AI公司推出的Sora文生视频模型惊艳亮相互联网&#xff0c;AI语音克隆创企ElevenLabs又为Sora的演示视频生成了配音&#xff0c;所有的音效均由AI创造&#xff0c;与视频内容完美融合。 ElevenLabs的语音克隆技术能够从一分钟的音频样本中创建逼真的声音。为了实现这一…

LVS集群 ----------------(直接路由 )DR模式部署

一、LVS集群的三种工作模式 lvs-nat&#xff1a;修改请求报文的目标IP,多目标IP的DNAT lvs-dr&#xff1a;操纵封装新的MAC地址&#xff08;直接路由&#xff09; lvs-tun&#xff1a;隧道模式 lvs-dr 是 LVS集群的 默认工作模式 NAT通过网络地址转换实现的虚拟服务器&…