【树】【异或】【深度优先】【DFS时间戳】2322. 从树中删除边的最小分数

作者推荐

【二分查找】【C++算法】378. 有序矩阵中第 K 小的元素

涉及知识点

树 异或 DFS时间戳

LeetCode2322. 从树中删除边的最小分数

存在一棵无向连通树,树中有编号从 0 到 n - 1 的 n 个节点, 以及 n - 1 条边。
给你一个下标从 0 开始的整数数组 nums ,长度为 n ,其中 nums[i] 表示第 i 个节点的值。另给你一个二维整数数组 edges ,长度为 n - 1 ,其中 edges[i] = [ai, bi] 表示树中存在一条位于节点 ai 和 bi 之间的边。
删除树中两条 不同 的边以形成三个连通组件。对于一种删除边方案,定义如下步骤以计算其分数:
分别获取三个组件 每个 组件中所有节点值的异或值。
最大 异或值和 最小 异或值的 差值 就是这一种删除边方案的分数。
例如,三个组件的节点值分别是:[4,5,7]、[1,9] 和 [3,3,3] 。三个异或值分别是 4 ^ 5 ^ 7 = 6、1 ^ 9 = 8 和 3 ^ 3 ^ 3 = 3 。最大异或值是 8 ,最小异或值是 3 ,分数是 8 - 3 = 5 。
返回在给定树上执行任意删除边方案可能的 最小 分数。
示例 1:
在这里插入图片描述

输入:nums = [1,5,5,4,11], edges = [[0,1],[1,2],[1,3],[3,4]]
输出:9
解释:上图展示了一种删除边方案。

  • 第 1 个组件的节点是 [1,3,4] ,值是 [5,4,11] 。异或值是 5 ^ 4 ^ 11 = 10 。
  • 第 2 个组件的节点是 [0] ,值是 [1] 。异或值是 1 = 1 。
  • 第 3 个组件的节点是 [2] ,值是 [5] 。异或值是 5 = 5 。
    分数是最大异或值和最小异或值的差值,10 - 1 = 9 。
    可以证明不存在分数比 9 小的删除边方案。
    示例 2:
    在这里插入图片描述

输入:nums = [5,5,2,4,4,2], edges = [[0,1],[1,2],[5,2],[4,3],[1,3]]
输出:0
解释:上图展示了一种删除边方案。

  • 第 1 个组件的节点是 [3,4] ,值是 [4,4] 。异或值是 4 ^ 4 = 0 。
  • 第 2 个组件的节点是 [1,0] ,值是 [5,5] 。异或值是 5 ^ 5 = 0 。
  • 第 3 个组件的节点是 [2,5] ,值是 [2,2] 。异或值是 2 ^ 2 = 0 。
    分数是最大异或值和最小异或值的差值,0 - 0 = 0 。
    无法获得比 0 更小的分数 0 。

预备知识

性质一:n个数进行异或运算。各位的结果等于各数本位1的数量是否为奇数。
当前 n 为 2 时:只有四种情况 1 ⊕ 1 = 0 , 0 ⊕ 0 = 0 , 0 ⊕ 1 = 1 , 1 ⊕ 0 = 1 全部符合 当 n > 2 时,任意选两个数,运算后 1 的数量奇偶性不变 当前n为2时:只有四种情况1\oplus1= 0, 0\oplus0= 0, 0\oplus1= 1,1\oplus0= 1 全部符合 \\ 当n>2时,任意选两个数,运算后1的数量奇偶性不变 当前n2时:只有四种情况11=0,00=0,01=1,10=1全部符合n>2时,任意选两个数,运算后1的数量奇偶性不变
推论一: n个数的异或,结果与运算顺序无关。
推论二:异或的逆运算就是本身。

深度优先

以任意节点(比如0)为根,除根节点外,每个节点都有且只有一个父节点。枚举两个非根节点A,B,A ≠ \neq =B。设整个树的的异或值c,子树A、B的异或值分别为a,b。删除后A和B连向父节点的边,0节点为根的树、A节点为根的树、B节点为根的树的异或值分别为:
{ c ⊕ a , a ⊕ b , b a 是 b 祖先 c ⊕ b , a , b ⊕ a b 是 a 祖先 c ⊕ a ⊕ b , a , b o t h e r \begin{cases} c \oplus a ,a\oplus b, b & a是b祖先 \\ c \oplus b, a ,b \oplus a & b是a祖先 \\ c\oplus a \oplus b,a,b & other \\ \end{cases} ca,abbcba,bacab,a,bab祖先ba祖先other

一,DFS各子树的异或值,祖先后代关心,时间复杂度O(nn)。
二,枚举两个节点(边),时间复杂度O(nn)。

代码

核心代码

class CNeiBo2
{
public:
	CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
	}
	CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
		for (const auto& v : edges)
		{
			m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
	}
	inline void Add(int iNode1, int iNode2)
	{
		iNode1 -= m_iBase;
		iNode2 -= m_iBase;
		m_vNeiB[iNode1].emplace_back(iNode2);
		if (!m_bDirect)
		{
			m_vNeiB[iNode2].emplace_back(iNode1);
		}
	}
	const int m_iN;
	const bool m_bDirect;
	const int m_iBase;
	vector<vector<int>> m_vNeiB;
};

class Solution {
public:
	int minimumScore(vector<int>& nums, vector<vector<int>>& edges) {
		m_c = nums.size();
		CNeiBo2 neiBo(m_c, edges, false);
		m_vXor.resize(m_c);
		m_vParent.assign(m_c, vector<bool>(m_c));
		vector<int> parent;
		DFS1(neiBo.m_vNeiB, 0, -1, nums, parent);
		int iRet = INT_MAX;
		int v[3];
		for (int i = 1; i < m_c; i++)
		{
			for (int j = 1; j < m_c; j++)
			{
				if (i == j)
				{
					continue;
				}	
				if (m_vParent[i][j])
				{
					v[0]=(m_vXor[0] ^  m_vXor[j]);
					v[1] = (m_vXor[i]);
					v[2] = (m_vXor[j] ^ m_vXor[i]);
				}
				else if(m_vParent[j][i])
				{
					v[0] = (m_vXor[0] ^ m_vXor[i]);
					v[1] = (m_vXor[i]^ m_vXor[j]);
					v[2] = (  m_vXor[j]);
				}
				else
				{
					v[0] = (m_vXor[0] ^ m_vXor[i] ^ m_vXor[j]);
					v[1] = (m_vXor[i]);
					v[2] = (m_vXor[j]);
				}
				sort(v, v+3);
				iRet = min(iRet, v[2] - v[0]);
			}
		}
		return iRet;
	}
	
	int DFS1(vector<vector<int>>& neiBo, int cur, int par, const vector<int>& nums, vector<int>& parent)
	{
		int ret = nums[cur];
		for (const auto& par1 : parent)
		{
			m_vParent[cur][par1] = true;
		}
		parent.emplace_back(cur);
		for (const auto& next : neiBo[cur])
		{
			if (next == par)
			{
				continue;
			}
			ret ^= DFS1(neiBo, next, cur, nums, parent);
		}
		parent.pop_back();
		return m_vXor[cur]=ret;
	}
	vector<int> m_vXor;
	vector<vector<bool>> m_vParent;
	int m_c;
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<int> nums;
	vector<vector<int>> edges;
	{
		Solution sln;
		nums = { 1,5,5,4,11 }, edges = { {0,1},{1,2},{1,3},{3,4} };
		auto res = sln.minimumScore(nums, edges);
		Assert(9, res);
	}
	
	{
		Solution sln;
		nums = { 5,5,2,4,4,2 }, edges = { {0,1},{1,2},{5,2},{4,3},{1,3} };
		auto res = sln.minimumScore(nums, edges);
		Assert(0, res);
	}
}

利用时间戳优化

已处理的节点中,时间戳大于cur的节点 是后代。两个变量分别记录:cur的时间戳,dfs(cur)结束时的时间戳。

2023年4月

class Solution {
public:
int minimumScore(vector& nums, vector<vector>& edges) {
m_c = nums.size();
m_vNeiB.resize(m_c);
m_vLeve.resize(m_c);
m_vXORSum.resize(m_c);
m_vInTime.resize(m_c);
m_vOutTime.resize(m_c);
m_nums = nums;
for (const auto& v : edges)
{
m_vNeiB[v[0]].emplace_back(v[1]);
m_vNeiB[v[1]].emplace_back(v[0]);
}
dfs(0, -1);
int iRet = INT_MAX;
std:vector v(3);
for (int i = 0; i < edges.size(); i++)
{
int iChild1 = (m_vLeve[edges[i][0]] > m_vLeve[edges[i][1]]) ? edges[i][0] : edges[i][1];
for (int j = i + 1; j < edges.size(); j++)
{
int iChild2 = (m_vLeve[edges[j][0]] > m_vLeve[edges[j][1]]) ? edges[j][0] : edges[j][1];
if (IsGrandParent(iChild1, iChild2))
{
v[0] = (m_vXORSum[iChild2] ^ m_vXORSum[iChild1]);
v[1] = (m_vXORSum[iChild1]);
v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2] ^ m_vXORSum[iChild1]);
}
else if (IsGrandParent(iChild2, iChild1))
{
v[0] = (m_vXORSum[iChild1] ^ m_vXORSum[iChild2]);
v[1] = (m_vXORSum[iChild2]);
v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2] ^ m_vXORSum[iChild2]);
}
else
{
v[0] = (m_vXORSum[iChild1]);
v[1] = (m_vXORSum[iChild2]);
v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2]);
}
const int iCurRet = *std::max_element(v.begin(), v.end()) - *std::min_element(v.begin(), v.end());
iRet = min(iRet, iCurRet);
}
}
return iRet;
}
bool IsGrandParent(int iNode1, int iIsGrandParent)
{
return (m_vInTime[iIsGrandParent] < m_vInTime[iNode1]) && (m_vOutTime[iIsGrandParent] >= m_vOutTime[iNode1]);
}
void dfs(int iCur, int iParent)
{
m_vInTime[iCur] = m_iTime++;
m_vLeve[iCur] = (-1 == iParent) ? 0 : m_vLeve[iParent]+1 ;
int iXorSum = m_nums[iCur];
for (const auto& next : m_vNeiB[iCur])
{
if (next == iParent)
{
continue;
}
dfs(next, iCur);
iXorSum ^= m_vXORSum[next];
}
m_vXORSum[iCur] = iXorSum;
m_vOutTime[iCur] = m_iTime;
}
int m_c;
vector<vector> m_vNeiB;
vector m_vLeve, m_vInTime, m_vOutTime;;
vector m_vXORSum;
vector m_nums;
int m_iTime = 1;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/429389.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

无人机遥感在农林信息提取中的实现方法与GIS融合应用

在新一轮互联网信息技术大发展的现今&#xff0c;无人机、大数据、人工智能、物联网等新兴技术在各行各业都处于大爆发的前夜。为了将人工智能方法引入农业生产领域。首先在种植、养护等生产作业环节&#xff0c;逐步摆脱人力依赖&#xff1b;在施肥灌溉环节构建智慧节能系统&a…

1.1_2 性能指标——速率、带宽、吞吐量

文章目录 1.1_2 性能指标——速率、带宽、吞吐量&#xff08;一&#xff09;速率&#xff08;二&#xff09;带宽&#xff08;三&#xff09;吞吐量 1.1_2 性能指标——速率、带宽、吞吐量 &#xff08;一&#xff09;速率 速率即数据率或称数据传输率或比特率。 速率就是“快…

《数字图像处理(MATLAB版)》相关算法代码及其分析(2)

目录 1 将8连通边界转换为4连通边界 1.1 移除对角线转折 1.2 插入额外像素 2 将边界信息转换为二进制图像 2.1 函数定义 2.2 参数处理和验证 2.3 默认大小参数设置 2.4 根据参数调整边界位置 2.5 生成二进制图像 2.6 错误处理 3 对二值图像边界的跟踪和提取 3.1 函…

Linux运维工具-ywtool默认功能介绍

提示:工具下载链接在文章最后 目录 一.资源检查二.日志刷新三.工具升级四.linux运维工具ywtool介绍五.ywtool工具下载链接 一.资源检查 只要系统安装了ywtool工具,默认就会配置上"资源检查"的脚本资源检查脚本的执行时间:每天凌晨3点进行检查资源检查脚本的检查内容…

激活函数Swish(ICLR 2018)

paper&#xff1a;Searching for Activation Functions 背景 深度网络中激活函数的选择对训练和任务表现有显著的影响。目前&#xff0c;最成功和最广泛使用的激活函数是校正线性单元&#xff08;ReLU&#xff09;。虽然各种手工设计的ReLU替代方案被提出&#xff0c;但由于在…

C# WinForm AndtUI第三方库 Tree控件使用记录

环境搭建 1.在NuGet中搜索AndtUI并下载至C# .NetFramework WinForm项目。 2.添加Tree控件至窗体。 使用方法集合 1.添加节点、子节点 using AntdUI; private void UpdateTreeView() {Tree tvwTestnew Tree();TreeItem rootTreeItem;TreeItem subTreeItem;Dictionary<str…

代码随想录刷题笔记-Day28

1. 重新安排行程 332. 重新安排行程https://leetcode.cn/problems/reconstruct-itinerary/给你一份航线列表 tickets &#xff0c;其中 tickets[i] [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。 所有这些机票都属于一个从 JFK&#xff08;肯…

centos7安装kafka、zookeeper

安装jdk 安装jdk8 安装zookeeper 在指定目录执行下载命令 我是在/newdisk/zookeeper目录下 wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.8/apache-zookeeper-3.5.8-bin.tar.gz --no-check-certificate下载好后并解压 tar -zxvf apache-zookeeper-3.5…

[译]BNF 表示法:深入了解 Python 的语法

[译]BNF 表示法&#xff1a;深入了解 Python 的语法 原文&#xff1a;《BNF Notation: Dive Deeper Into Python’s Grammar》 https://realpython.com/python-bnf-notation/ 在阅读Python文档的时候&#xff0c;你可能已经遇到过BNF(Backus–Naur form)表示法&#xff1a; 下…

微软大中华区商业应用事业部高级产品经理张诗源,将出席“ISIG-低代码/零代码技术与应用发展峰会”

3月16日&#xff0c;第四届「ISIG中国产业智能大会」将在上海中庚聚龙酒店拉开序幕。本届大会由苏州市金融科技协会指导&#xff0c;企智未来科技&#xff08;LowCode低码时代、RPA中国、AIGC开放社区&#xff09;主办。大会旨在聚合每一位产业成员的力量&#xff0c;深入探索低…

ClickHouse SQL Reference (四)数据类型

Tuple(T1, T2, …) 元素元组&#xff0c;每个元素都有一个单独的类型。元组必须至少包含一个元素。 元组用于临时列分组。在查询中使用IN表达式时&#xff0c;以及指定lambda函数的某些形式参数时&#xff0c;可以对列进行分组。有关更多信息&#xff0c;请参阅IN操作符和高阶…

MATLAB知识点:while-end循环语句

​讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自​第4章&#xff1a;MATLAB程序流程控制 除了for-end语…

解决win10系统cmd命令无法使用ssh问题

目录 问题说明&#xff1a;在使用ssh命令连接虚拟机地址时&#xff0c;出现了以下报错&#xff1a;​编辑 解决方法如下&#xff1a; 1.打开Windows设置&#xff0c;搜索点击添加可选功能&#xff1a; 2.点击添加功能&#xff1a; 3.安装Open SSH客户端和Open SSH服务器: …

Kube-Prometheus 监控Istio

推荐 Istio 多集群监控使用 Prometheus&#xff0c;其主要原因是基于 Prometheus 的分层联邦&#xff08;Hierarchical Federation&#xff09;。 通过 Istio 部署到每个集群中的 Prometheus 实例作为初始收集器&#xff0c;然后将数据聚合到网格层次的 Prometheus 实例上。 网…

大模型学习笔记五:RAG

文章目录 一、RAG介绍1)局限性2)通过检索增强生成二、RAG系统的基本搭建流程1)搭建流程简介2)文档的加载和切割3)检索引擎4)LLM接口封装5)prompt模板6)RAG Pipeline初探7)关键字检索局限性三、向量检索1)文本向量2)向量相似度计算3)向量数据库4)基于向量检索的RAG…

【MATLAB源码-第156期】基于matlab的OFDM系统多径信道下BPSK,4QAM和16QAM三种调制方式误码率对比。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 OFDM&#xff08;Orthogonal Frequency Division Multiplexing&#xff0c;正交频分复用&#xff09;是一种高效的无线信号传输技术&#xff0c;广泛应用于现代通信系统&#xff0c;如Wi-Fi、LTE和5G。OFDM通过将宽带信道划分…

【力扣hot100】刷题笔记Day21

前言 快乐周日&#xff0c;做了个美梦睡了个懒觉&#xff0c;组会前刷刷栈的题吧 20. 有效的括号 - 力扣&#xff08;LeetCode&#xff09; 辅助栈 class Solution:def isValid(self, s: str) -> bool:dic {):(,]:[,}:{}st []for c in s:if st and c in dic:if dic[c] …

SqlServer 默认值约束示例

创建表&#xff0c;创建时指定 money 字段默认值为0.00&#xff1b; create table t_24 ( account varchar(19) not null, id_card char(18) not null, name varchar(20) not null, money decimal(16,2) default 0.00 not null ); 录入2条记录&#xff0c;money字…

Unity之街机捕鱼

目录 &#x1f62a;炮台系统 &#x1f3b6;炮口方向跟随鼠标 &#x1f3b6;切换炮台 &#x1f62a;战斗系统 &#x1f3ae;概述 &#x1f3ae;单例模式 &#x1f3ae;开炮 &#x1f3ae;子弹脚本 &#x1f3ae;渔网脚本 &#x1f3ae;鱼属性信息的脚本 &#x1f6…

08. Nginx进阶-Nginx动静分离

简介 什么是动静分离&#xff1f; 通过中间件将动态请求和静态请求进行分离。分离资源&#xff0c;减少不必要的请求消耗&#xff0c;减少请求延时。 动静分离的好处 动静分离以后&#xff0c;即使动态服务不可用&#xff0c;静态资源仍不受影响。 动静分离示意图 动静分离…