支持向量机 SVM | 线性可分:硬间隔模型公式推导

目录

  • 一. SVM的优越性
  • 二. SVM算法推导
    • 小节
    • 概念

在开始讲述SVM算法之前,我们先来看一段定义:

'''
支持向量机(Support VecorMachine, SVM)
	本身是一个二元分类算法,支持线性分类和非线性分类的分类应用,同时通过OvR或者OvO的方式可以应用在多元分类领域中
	能够直接将SVM应用于回归应用中
在不考虑集成学习算法或者特定的数据集时,SVM在分类算法中可以说是一种特别优秀的算法
'''

在这里插入图片描述

一. SVM的优越性

在Logistic回归算法中:
    我们追求是寻找一条决策边界,即找到一条能够正确划分所有训练样本的边界;
    当所有样本正确划分时,损失函数已降至最低,模型不再优化

在SVM算法中:
    我们追求是寻找一条最优决策边界

	那什么是最优呢?
		SVM提出的基本思想是,寻找一条决策边界,使得该边界到两边最近的点间隔最大
		
	这样做得目的在于:
		相比于其他边界,svm寻找到的边界对于样本的局部扰动容忍性最好,对新进样本更容易判断正确;
		也就是说,此时决策边界具有最好的鲁棒性

在这里插入图片描述

二. SVM算法推导

	注意:下面讲述的是线性分类

这里我们换一种思路寻找最佳决策边界:

首先假设决策边界为
y = ω → ⋅ x → + b y= \overrightarrow{\omega }\cdot \overrightarrow{x} +b y=ω x +b

公式解释1:

为什么要这么设方程呢?

我们希望通过向量点乘来确定距离
换句话说,希望通过向量点乘来确定正负样本的边界

在这里插入图片描述

为了寻找最佳决策边界,我们可以:
以上述决策边界为中心线,向两边做平行线,让这两条平行线过两边最近的样本点;此时会形成一条“街道”,最佳决策边界就是使这条街道最宽的那个决策边界。

在这里插入图片描述

补充一点:
在Logistic回归算法中,我们人为的将数据集设为1,0
在SVM算法中,我们人为的将数据集设为1,-1

参数说明:

width:街宽

ω → \overrightarrow{\omega } ω :决策边界的法向量

u − → \overrightarrow{u_{-} } u :街边上的负样本向量

u + → \overrightarrow{u_{+} } u+ :街边上的正样本向量

单位向量: a → ∥ a ∥ \frac{\overrightarrow{a}}{\left \| a \right \| } aa

向量点乘几何的意义:
a → ⋅ b → = ∣ a → ∣ ∣ b → ∣ cos ⁡ θ \overrightarrow{a}\cdot \overrightarrow{b} =\left | \overrightarrow{a} \right| |\overrightarrow{b} | \cos \theta a b = a b cosθ
可以理解为 a → \overrightarrow{a} a b → \overrightarrow{b} b 上的投影长度乘以 ∣ b → ∣ |\overrightarrow{b}| b 的模长
在这里插入图片描述

对于训练集中的任何一个数据,我们总会取到一个合适长度的 ω → \overrightarrow{\omega } ω ,以及一个适合的常数b,得到:
{ ω → ⋅ u + → + b ≥ 1 ω → ⋅ u − → + b ≤ − 1 \left\{\begin{matrix}\overrightarrow{\omega }\cdot \overrightarrow{u_{+} } +b\ge 1 \\\overrightarrow{\omega }\cdot \overrightarrow{u_{-} } +b\le -1 \end{matrix}\right. {ω u+ +b1ω u +b1

即可以合并为: y i ( ω → ⋅ u i → + b ) ≥ 1 y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{u_{i} } +b)\ge1 yi(ω ui +b)1
而对于街边点而言,满足
y i ( ω → ⋅ u i → + b ) = 1 y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{u_{i} } +b)=1 yi(ω ui +b)=1

	注意:这些街边点对于决定决策边界取决定性作用,因此被称为支持向量

这样,我们就可以用数学方式将上述街宽抽象出来:
w i d t h = ( u + → − u − → ) ⋅ w → ∥ w ∥ width = (\overrightarrow{u_{+}}-\overrightarrow{u_{-}} )\cdot \frac{\overrightarrow{w}}{\left \| w \right \| } width=(u+ u )ww
推导式子,就可以进一步得到:

w i d t h = ( u + → − u − → ) ⋅ w → ∥ w ∥ width = (\overrightarrow{u_{+}}-\overrightarrow{u_{-}} )\cdot \frac{\overrightarrow{w}}{\left \| w \right \| } width=(u+ u )ww

        = u + → ⋅ ω → ∥ ω → ∥ − u − → ⋅ ω → ∥ ω → ∥ =\frac{\overrightarrow{u_{+}}\cdot\overrightarrow{\omega _{}} }{\left \| \overrightarrow{\omega\mathrm{} } \right \| }-\frac{\overrightarrow{u_{-}}\cdot\overrightarrow{\omega _{}} }{\left \| \overrightarrow{\omega\mathrm{} } \right \| } =ω u+ ω ω u ω

        = 1 − b ∥ w → ∥ − − 1 − b ∥ w → ∥ =\frac{1-b}{\left \| \overrightarrow{w} \right \| } -\frac{-1-b}{\left \| \overrightarrow{w} \right \| } =w 1bw 1b

        = 2 ∥ w → ∥ =\frac{2}{\left \| \overrightarrow{w} \right \| } =w 2

此时,我们要求街宽最大,即是求 m i n ( ∥ w → ∥ ) min({\left \| \overrightarrow{w} \right \| }) min( w ),这里为了后续求导方便,将值写成 m i n ( 1 2 ∥ w → ∥ 2 ) min(\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} ) min(21 w 2)

需要明确,"街边"最大值的条件是基于支持向量的,而支持向量是属于数据集的,因此我们的问题就变成了:
{ m i n ( 1 2 ∥ w → ∥ 2 ) s . t . y i ( ω → ⋅ x → + b ) − 1 ≥ 0 \left\{\begin{matrix}min(\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} ) \\s.t. y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{x } +b)-1\ge0 \end{matrix}\right. {min(21 w 2)s.t.yi(ω x +b)10

这是一个典型的条件极值问题,我们用拉格朗日乘数法,得到拉格朗日函数为:
L = 1 2 ∥ w → ∥ 2 − ∑ i = 1 m β i [ y i ( ω → ⋅ x → + b ) − 1 ] , ( β i ≥ 0 ) L = \frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} -\sum_{i=1}^{m} \beta _{i}[ y_{i} (\overrightarrow{\omega }\cdot \overrightarrow{x } +b)-1] ,(\beta _{i}\ge 0) L=21 w 2i=1mβi[yi(ω x +b)1],(βi0)

这里的约束是不等式约束,所以要使用KKT条件(KKT是拉格朗日乘数法的一种泛化形式,此时 β i ≥ 0 \beta _{i}\ge0 βi0),而KKT条件的计算方式为: max ⁡ β ≥ 0 min ⁡ w , b L ( w , b , β ) \max_{\beta \ge 0} \min_{w,b}L(w,b,\beta ) β0maxw,bminL(w,b,β)

∂ L ∂ w = w − ∑ i = 1 m β i x ( i ) y ( i ) = 0 ⇒ w = ∑ i = 1 m β i x ( i ) y ( i ) \frac{\partial L}{\partial w} =w-\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)}=0\Rightarrow w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} wL=wi=1mβix(i)y(i)=0w=i=1mβix(i)y(i)

∂ L ∂ b = − ∑ i = 1 m β i y ( i ) = 0 ⇒ 0 = ∑ i = 1 m β i y ( i ) \frac{\partial L}{\partial b} =-\sum_{i=1}^{m} \beta _{i}y^{(i)}=0\Rightarrow 0=\sum_{i=1}^{m} \beta _{i} y^{(i)} bL=i=1mβiy(i)=00=i=1mβiy(i)

公式解释:
β \beta β是每个样本对应的拉格朗日乘子

对于非支持向量而言, β = 0 \beta=0 β=0,即对非支持向量无约束

则: y ( i ) ∗ 0 = 0 y^{(i)}*0=0 y(i)0=0

对于支持向量而言, β > 0 \beta>0 β>0,即对支持向量有约束

则: 正样本支持向量 ∗ 1 + 负样本支持向量 ∗ ( − 1 ) = 0 正样本支持向量\ast 1+负样本支持向量\ast (-1)=0 正样本支持向量1+负样本支持向量(1)=0

此时 L ( β ) L(\beta) L(β)为:

L ( β ) = 1 2 ∥ w → ∥ 2 − ∑ i = 1 m β i [ y ( i ) ( ω T ⋅ x ( i ) + b ) − 1 ] L(\beta)=\frac{1}{2}\left \| \overrightarrow{w} \right \| ^{2} -\sum_{i=1}^{m} \beta _{i}[y^{(i)} (\omega ^{T} \cdot x^{(i)} +b)-1] L(β)=21 w 2i=1mβi[y(i)(ωTx(i)+b)1]

      = 1 2 ω T ω − ∑ i = 1 m β i y ( i ) ω T ⋅ x ( i ) − b ∑ i = 1 m β i y ( i ) + ∑ i = 1 m β i =\frac{1}{2}\omega ^{T}\omega -\sum_{i=1}^{m} \beta _{i}y^{(i)}\omega ^{T} \cdot x^{(i)}-b\sum_{i=1}^{m} \beta _{i}y^{(i)}+\sum_{i=1}^{m} \beta _{i} =21ωTωi=1mβiy(i)ωTx(i)bi=1mβiy(i)+i=1mβi

      = 1 2 ω T ∑ i = 1 m β i x ( i ) y ( i ) − ∑ i = 1 m β i y ( i ) ω T x ( i ) + ∑ i = 1 m β i =\frac{1}{2}\omega ^{T}\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} -\sum_{i=1}^{m} \beta _{i}y^{(i)}\omega ^{T}x^{(i)}+\sum_{i=1}^{m} \beta _{i} =21ωTi=1mβix(i)y(i)i=1mβiy(i)ωTx(i)+i=1mβi

      = − 1 2 ω T ∑ i = 1 m β i x ( i ) y ( i ) + ∑ i = 1 m β i =-\frac{1}{2}\omega ^{T}\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} +\sum_{i=1}^{m} \beta _{i} =21ωTi=1mβix(i)y(i)+i=1mβi

      = − 1 2 ( ∑ j = 1 m β j x ( j ) y ( j ) ) T ( ∑ i = 1 m β i x ( i ) y ( i ) ) + ∑ i = 1 m β i =-\frac{1}{2}(\sum_{j=1}^{m} \beta _{j} x^{(j)}y^{(j)})^{T}(\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} )+\sum_{i=1}^{m} \beta _{i} =21(j=1mβjx(j)y(j))T(i=1mβix(i)y(i))+i=1mβi

      = − 1 2 ∑ j = 1 m β j x ( j ) T y ( j ) ∑ i = 1 m β i x ( i ) y ( i ) + ∑ i = 1 m β i =-\frac{1}{2}\sum_{j=1}^{m} \beta _{j} x^{(j)^{T}}y^{(j)}\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} +\sum_{i=1}^{m} \beta _{i} =21j=1mβjx(j)Ty(j)i=1mβix(i)y(i)+i=1mβi

      = ∑ i = 1 m β i − 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) =\sum_{i=1}^{m} \beta _{i}-\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)} =i=1mβi21i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)

即: { L ( β ) = ∑ i = 1 m β i − 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) s . t : ∑ i = 1 m β i y ( i ) = 0 \left\{\begin{matrix}L(\beta)=\sum_{i=1}^{m} \beta _{i}-\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0 \end{matrix}\right. {L(β)=i=1mβi21i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)s.t:i=1mβiy(i)=0

解到这一步,我们发现L函数只与 β \beta β有关,所以此时可以直接极大化我们的优化函数,且
max ⁡ β ≥ 0 l ( β ) ⟶ min ⁡ β ≥ 0 − l ( β ) \max_{\beta \ge 0}l(\beta ) \longrightarrow \min_{\beta \ge 0}-l(\beta ) β0maxl(β)β0minl(β)
因此,求解 β \beta β就变成了
{ min ⁡ β ≥ 0 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) − ∑ i = 1 m β i s . t : ∑ i = 1 m β i y ( i ) = 0 \left\{\begin{matrix}\min_{\beta \ge 0}\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)}-\sum_{i=1}^{m} \beta _{i} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0 \end{matrix}\right. {minβ021i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)i=1mβis.t:i=1mβiy(i)=0

但是对于 β \beta β,可以使用SMO算法求得;对于SMO算法,我们先放一放

这里,假设我们用SMO求得了 β \beta β的最优解,那么我们可以分别计算得到对应的:

w = ∑ i = 1 m β i x ( i ) y ( i ) w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} w=i=1mβix(i)y(i)
b:一般使用所有支持向量的计算均值作为实际值

怎么得到支持向量呢?
β = 0 \beta=0 β=0,该样本不是支持向量
β > 1 \beta>1 β>1,该样本是支持向量

小节

对于线性可分的m个样本(x1,y1),(x2,y2)… :

	x为n维的特征向量
	y为二元输出,即+1,-1

SVM的输出为w,b,分类决策函数

通过构造约束问题:
{ min ⁡ β ≥ 0 1 2 ∑ i = 1 m ∑ j = 1 m β i β j y ( i ) y ( j ) x ( j ) T x ( i ) − ∑ i = 1 m β i s . t : ∑ i = 1 m β i y ( i ) = 0 \left\{\begin{matrix}\min_{\beta \ge 0}\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m} \beta _{i}\beta _{j} y^{(i)}y^{(j)}x^{(j)^{T}} x^{(i)}-\sum_{i=1}^{m} \beta _{i} \\s.t:\sum_{i=1}^{m} \beta _{i} y^{(i)}=0 \end{matrix}\right. {minβ021i=1mj=1mβiβjy(i)y(j)x(j)Tx(i)i=1mβis.t:i=1mβiy(i)=0
使用SMO算法求出上述最优解 β \beta β
找到所有支持向量集合:
S = ( x ( i ) , y ( i ) ) ( β > 0 , i = 1 , 2 , . . . , m ) S = (x^{(i)}, y^{(i)}) (\beta > 0,i=1,2,...,m) S=(x(i),y(i))(β>0,i=1,2,...,m)
从而更新w,b

w = ∑ i = 1 m β i x ( i ) y ( i ) w=\sum_{i=1}^{m} \beta _{i} x^{(i)}y^{(i)} w=i=1mβix(i)y(i)

b = 1 S ∑ i = 1 S ( y s − ∑ i = 1 m β i x ( i ) T y ( i ) x s ) b=\frac{1}{S} \sum_{i=1}^{S}(y^{s}- \sum_{i=1}^{m} \beta _{i} x^{(i)^{T}}y^{(i)}x^{s} ) b=S1i=1S(ysi=1mβix(i)Ty(i)xs)

构造最终的分类器,为:
f ( x ) = s i g n ( w ∗ x + b ) f(x)=sign(w\ast x+b) f(x)=sign(wx+b)

	x<0时,y=-1
	x=0时,y=0
	x>0时,y=1
	
	注意:
		假设,不会出现0
		若出现,正负样本随意输出一个,即+0.00000001或-0.00000001都可以

概念

最后,我们定义具体概念:

分割超平面(Separating Hyperplane):将数据集分割开来的直线、平面叫分割超平面

支持向量(Support Vector):离分割超平面最近的那些点叫做支持向量

间隔(Margin):支持向量数据点到分割超平面的距离称为间隔;任何一个支持向量到分割超平面的距离都是相等的


感谢阅读🌼
如果喜欢这篇文章,记得点赞👍和转发🔄哦!
有任何想法或问题,欢迎留言交流💬,我们下次见!
本文相关代码存放位置
    

祝愉快🌟!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/427984.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【设计模式】观察者模式及函数式编程的替代C++

本文介绍观察者模式以及使用函数式编程替代简单的策略模式。 观察者模式 观察者模式是一种行为型设计模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;其所有依赖者都会收到通知并自动更新。 当对象间存在一对多关系时&#…

Java集合框架-Collection和Map

文章目录 Collection-单列集合特点ListArrayListLinkedListVecter SetHashSetTreeSet Map-键值对集合特点Map常用APIput添加细节remove Map的三种遍历方式1.通过键找值2.通过"键值对"3.Lambda表达式foreach源码 HashMap需求 为什么要使用泛型 泛型的优点1.集合中存储…

c4d渲染到一半未响应怎么办?

如果您曾经遇到过 Cinema 4D 在渲染过程中崩溃的令人沮丧的场景&#xff0c;这种情况是很常见的。这种意外的卡顿崩溃&#xff0c;尤其是在经过数小时的精心工作之后&#xff0c;确实令人烦躁。为了帮助您解决此问题&#xff0c;您可以查看一些内容。 1、硬件限制&#xff1a;…

鸿蒙App开发新思路:小程序转App

国家与国家之间错综复杂&#xff0c;在谷歌的安卓操作系统“断供”后&#xff0c;鸿蒙系统的市场化&独立化的道路便显而易见了。 2024年1月18日&#xff0c;华为宣布&#xff0c;不再兼容安卓的“纯血鸿蒙”--HarmonyOS NEXT鸿蒙星河版最终面世&#xff0c;并与2024年Q4正…

C++模板完整版

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、泛型编程 如何实现一个通用的交换函数呢&#xff1f; void Swap(int& left, int& right) {int temp left…

BioTech - ADMET的性质预测 概述

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/136438192 ADMET&#xff0c;即 Absorption、Distribution、Metabolism、Excretion、Toxicity&#xff0c;吸收、分布、代谢、排泄、毒性…

VL53L8CX驱动开发(1)----驱动TOF进行区域检测

VL53L8CX驱动开发----1.驱动TOF进行区域检测 概述视频教学样品申请源码下载主要特点硬件准备技术规格系统框图应用示意图区域映射生成STM32CUBEMX选择MCU 串口配置IIC配置LPn 设置X-CUBE-TOF1串口重定向代码配置Tera Term配置演示结果 概述 VL53L8CX是一款8x8多区域ToF测距传感…

【学习心得】爬虫JS逆向通解思路

我希望能总结一个涵盖大部分爬虫逆向问题的固定思路&#xff0c;在这个思路框架下可以很高效的进行逆向爬虫开发。目前我仍在总结中&#xff0c;下面的通解思路尚不完善&#xff0c;还望各位读者见谅。 一、第一步&#xff1a;明确反爬手段 反爬手段可以分为几个大类 &#…

【CSP试题回顾】202305-2-矩阵运算

CSP-202305-2-矩阵运算 关键点总结&#xff1a;改变矩阵计算顺序优化时间复杂度 通过先计算 K T V K ^ T \times V KTV 而不是先计算 Q K T Q \times K ^ T QKT&#xff0c;有效地减少了计算时间&#xff0c;特别是在处理长序列时。这种优化通常在数据维度一不等时有显著效…

盘点:国家智能算力中心

文章目录 1. Main2. My thoughtsReference 1. Main 按照《中国算力白皮书&#xff08;2022年&#xff09;》的定义&#xff0c;算力主要分为四部分&#xff1a;通用算力、智能算力、超算算力、边缘算力。通用算力以CPU芯片输出的计算能力为主&#xff1b;智能算力以GPU、FPGA、…

DevStack 基于 Ubuntu 部署 OpenStack

Devstack 简介 DevStack 是一系列可扩展的脚本&#xff0c;用于基于 git master 的最新版本快速调出完整的 OpenStack 环境。devstack 以交互方式用作开发环境和 OpenStack 项目大部分功能测试的基础。 devstack 透过执行 stack.sh 脚本&#xff0c;搭建 openstack 环境&…

检修弧形导轨需遵守的原则

弧形导轨被广泛应用在各行各业中&#xff0c;特别是工业自动化领域中&#xff0c;是自动化机械设备中重要的传动零部件。在使用弧形导轨时&#xff0c;为防止意外发生或对机械设备造成损坏&#xff0c;在检修过程中必须遵守以下一些原则&#xff1a; ●安全第一&#xff1a;出现…

java核心面试题汇总

文章目录 1. Java1.1. TCP三次握手/四次挥手1.2 HashMap底层原理1.3 Java常见IO模型1.4 线程与线程池工作原理1.5 讲一讲ThreadLocal、Synchronized、volatile底层原理1.6 了解AQS底层原理吗 2. MySQL2.1 MySQL索引为何不采用红黑树&#xff0c;而选择B树2.2 MySQL索引为何不采…

蓝凌EIS智慧协同平台 rpt_listreport_definefield.aspx SQL注入漏洞复现

0x01 产品简介 蓝凌EIS智慧协同平台是一款专为企业提供高效协同办公和团队合作的产品。该平台集成了各种协同工具和功能,旨在提升企业内部沟通、协作和信息共享的效率。 0x02 漏洞概述 由于蓝凌EIS智慧协同平台 rpt_listreport_definefield.aspx接口处未对用户输入的SQL语句…

一.数据分析简介

目录 一、了解数据分析 1.1 什么是数据分析 1.2 数据分析的重要性 1.3 数据分析的基本流程 数据获取 数据处理 1.4 数据分析的应用场景 客户分析 营销分析 二、数据分析工具 jupyter 2.1 编辑器安装 2.2 Jupyter快捷使用 一、了解数据分析 学习数据分析&#xff0…

【在巴厘岛学点印尼语】日常篇

BINTANG BIR 槟棠啤酒 今天不写代码&#xff0c;在巴厘岛休养&#xff0c;顺便聊点印尼语。 印尼语&#xff0c;Bahasa Indonesia&#xff0c;是印度尼西亚的官方语言&#xff0c;也即印尼化的马来语廖内方言&#xff0c;其变种包括 爪哇语&#xff08;岛民方言&#xff09; 等…

振弦式埋入应变计:工程安全的精准守护者

振弦式埋入应变计是一种先进的工程监测设备&#xff0c;以其卓越的性能和稳定的可靠性&#xff0c;广泛应用于水工建筑物及其他混凝土结构物的长期安全监测中。峟思振弦埋入式应变计的核心部件采用进口钢弦制成&#xff0c;保证了其使用寿命的长久性。同时&#xff0c;主要构件…

Java面试题总结200道(二)

26、简述Spring中Bean的生命周期&#xff1f; 在原生的java环境中&#xff0c;一个新的对象的产生是我们用new()的方式产生出来的。在Spring的IOC容器中&#xff0c;将这一部分的工作帮我们完成了(Bean对象的管理)。既然是对象&#xff0c;就存在生命周期&#xff0c;也就是作用…

【云呐】固定资产条码管理系统有哪些优势

在当今信息时代&#xff0c;企业越来越重视固定资产的管理。传统的固定资产管理方法已经无法满足公司日益增长的需求&#xff0c;固定资产条形码管理系统的出现给企业带来了全新的解决方案。下面我们就讨论固定资产条形码管理系统的优势以及对公司的价值。 提升资产管理效率 固…

【Python】进阶学习:pandas--read_csv()用法详解

&#x1f680;【Python】进阶学习&#xff1a;pandas–read_csv()用法详解&#x1f680; &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教…