性别和年龄的视频实时监测项目

注意:本文引用自专业人工智能社区Venus AI
更多AI知识请参考原站 ([www.aideeplearning.cn])

性别和年龄检测 Python 项目

首先介绍性别和年龄检测的高级Python项目中使用的专业术语

什么是计算机视觉?

计算机视觉是使计算机能够像人类一样查看和识别数字图像和视频的研究领域。它面临的挑战很大程度上源于对生物视觉的有限理解。计算机视觉涉及获取、处理、分析和理解数字图像,以从现实世界中提取高维数据,从而生成可用于做出决策的符号或数字信息。该过程通常包括对象识别、视频跟踪、运动估计和图像恢复等实践。

什么是 OpenCV?

OpenCV是开源计算机视觉的缩写。顾名思义,它是一个开源计算机视觉和机器学习库。该库能够处理实时图像和视频,同时还具有分析功能。它支持深度学习框架Tensorflow、Caffe 和 PyTorch。

什么是CNN?

CNN即卷积神经网络,是一种广泛用于图像识别和处理的深度神经网络 (DNN) 。它具有输入层和输出层以及多个隐藏层,其中许多是卷积层。在某种程度上,CNN 是正则化的多层感知器。

性别和年龄检测——目标

构建一个性别和年龄检测器,可以在 Adience 数据集上使用深度学习模型来大致猜测图片中人(脸部)的性别和年龄。

性别和年龄检测——关于该项目

在这个 Python 项目中,我们将使用深度学习从单张脸部图像中准确识别一个人的性别和年龄。我们将使用Tal Hassner 和 Gil Levi训练的模型。预测的性别可以是“男性”和“女性”之一,预测的年龄可以是以下范围之一 – (0 – 2)、(4 – 6)、(8 – 12)、(15 – 20) 、(25 – 32)、(38 – 43)、(48 – 53)、(60 – 100)(最终 softmax 层中的 8 个节点)。由于化妆、灯光、障碍物和面部表情等因素,很难从单张图像中准确猜测出确切的年龄。因此,我们将其视为分类问题,而不是回归问题。项目的结果展示动态图如下所示,请点击观看:

ev_20240225_131028

CNN 架构

这个 python 项目的卷积神经网络很简单,有 3 个卷积层:

  • 卷积层:96 个节点,卷积核大小 7
  • 卷积层:256 个节点,卷积核大小 5
  • 卷积层:384 个节点,卷积核大小 3

它有 2 个全连接层,每个层有 512 个节点,以及一个 softmax 类型的最终输出层。

要开始 python 项目,我们将:

  • 检测人脸
  • 分为男/女
  • 分为 8 个年龄范围之一
  • 将结果放在图像上并显示
数据集

对于这个 python 项目,我们将使用 Adience 数据集;该数据集可在公共领域使用,您可以在此处找到它。该数据集作为人脸照片的基准,包含各种现实世界的成像条件,如噪声、照明、姿势和外观。这些图像是从 Flickr 相册中收集的,并根据知识共享 (CC) 许可进行分发。它共有 26,580 张照片,涉及 8 个年龄段(如上所述)的 2,284 名拍摄对象,大小约为 1GB。我们将使用的模型已经在此数据集上进行了训练。

先决条件

您需要安装 OpenCV (cv2) 才能运行该项目。可以用 pip- 来做到这一点

​​​​​​pip install opencv-python

您需要的其他包是 math 和 argparse,它们是标准 Python 库的一部分。

项目的目录结构

项目的目录结构如下:

  • opencv_face_ detector.pbtxt
  • opencv_face_ detector_uint8.pb
  • Age_deploy.prototxt
  • Age_net.caffemodel
  • gander_deploy.prototxt
  • gander_net.caffemodel
  • main.py
  • 一示例的图片

关于上述文件类型的解释:

  • .pb文件:这是一个TensorFlow用于保存模型的文件格式。它包含了模型的结构(也就是神经网络的架构)和模型训练后的权重(即模型在训练过程中学到的信息)。使用这个文件,我们可以运行一个已经训练好的模型来进行面部检测。
  • .pbtxt文件:与.pb文件类似,但它以文本格式存储protobuf数据,而不是二进制格式。这使得文件内容可以直接阅读和编辑,但通常大小会更大。
  • TensorFlow文件:TensorFlow是一个流行的机器学习框架,用于创建和训练神经网络。.pb和.pbtxt文件都是TensorFlow用来保存模型的文件格式。
  • .prototxt文件:这些文件用于描述神经网络的结构,即网络中每一层应该如何构建。这对于构建用于年龄和性别识别的模型特别重要。
  • .caffemodel文件:这种文件格式是Caffe框架的一部分,另一个流行的机器学习框架。.caffemodel文件保存了训练后的模型参数,即网络每一层的权重和偏置。这对于运行已经训练好的年龄和性别识别模型至关重要。

注意:上述这些文件是博主将项目编译之后得到的结果,而不是原始项目代码。这些文件类型通常用于存储训练好的模型和它们的配置,而不是用于存储原始的源代码。原代码详见Github:https://github.com/eranid/adience_align/tree/master

main.py脚本详解:

导入库

  • import cv2: 导入 OpenCV 库,用于计算机视觉相关任务。
  • import math: 导入数学库,提供数学运算支持。
  • import argparse: 导入参数解析库,用于解析命令行参数。
import cv2
import math
import argparse

highlightFace 函数

  • 这个函数用于在图像中突出显示人脸。
  • frame: 要处理的图像。
  • conf_threshold: 用于确定检测是否有效的置信度阈值。
  • 函数首先创建图像的副本,然后根据图像的尺寸生成一个 blob(神经网络输入)。
  • 使用提供的神经网络 (net) 对 blob 进行前向传播,以检测图像中的人脸。
  • 检测到的每个人脸都被添加到 faceBoxes 列表中,并在图像上绘制矩形框以突出显示人脸。
  • 返回处理后的图像和检测到的人脸框列表。 
def highlightFace(net, frame, conf_threshold=0.7):
    frameOpencvDnn=frame.copy()
    frameHeight=frameOpencvDnn.shape[0]
    frameWidth=frameOpencvDnn.shape[1]
    blob=cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)

    net.setInput(blob)
    detections=net.forward()
    faceBoxes=[]
    for i in range(detections.shape[2]):
        confidence=detections[0,0,i,2]
        if confidence>conf_threshold:
            x1=int(detections[0,0,i,3]*frameWidth)
            y1=int(detections[0,0,i,4]*frameHeight)
            x2=int(detections[0,0,i,5]*frameWidth)
            y2=int(detections[0,0,i,6]*frameHeight)
            faceBoxes.append([x1,y1,x2,y2])
            cv2.rectangle(frameOpencvDnn, (x1,y1), (x2,y2), (0,255,0), int(round(frameHeight/150)), 8)
    return frameOpencvDnn,faceBoxes

解析命令行参数: 

  • 使用 argparse 库来解析命令行输入的参数。这里解析了 --image 参数,允许用户指定一个图像文件的路径。
  • 若不指定,默认使用摄像头采集当前画面进行实时检测。
parser=argparse.ArgumentParser()
parser.add_argument('--image')

args=parser.parse_args()

加载模型
  • 指定了用于人脸检测、年龄和性别预测的模型文件的路径。
  • 使用 cv2.dnn.readNet 从这些路径加载对应的模型。
  • MODEL_MEAN_VALUES: 在预处理图像时用于归一化的均值。
  • ageList 和 genderList: 分别包含年龄范围和性别类别的列表。
faceProto="opencv_face_detector.pbtxt"
faceModel="opencv_face_detector_uint8.pb"
ageProto="age_deploy.prototxt"
ageModel="age_net.caffemodel"
genderProto="gender_deploy.prototxt"
genderModel="gender_net.caffemodel"

MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 114.895847746)
ageList=['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList=['Male','Female']

faceNet=cv2.dnn.readNet(faceModel,faceProto)
ageNet=cv2.dnn.readNet(ageModel,ageProto)
genderNet=cv2.dnn.readNet(genderModel,genderProto)

处理视频流

  • 使用 cv2.VideoCapture 打开视频源(从文件或摄像头)。
  • 在一个循环中读取每一帧图像,并使用 highlightFace 函数检测人脸。
video=cv2.VideoCapture(args.image if args.image else 0)

性别和年龄预测
  • 对于检测到的每个人脸,截取人脸区域并为性别和年龄预测网络准备输入 blob。
  • 运行性别和年龄预测网络,并从 genderList 和 ageList 中获取预测结果。
  • 将预测结果(性别和年龄)打印出来,并在图像上绘制包含这些信息的文本。
  • 使用 cv2.imshow 显示带有预测结果的图像。
  • 循环持续进行,直到用户按键中断。
padding=20
while cv2.waitKey(1)<0:
    hasFrame,frame=video.read()
    if not hasFrame:
        cv2.waitKey()
        break

    resultImg,faceBoxes=highlightFace(faceNet,frame)
    if not faceBoxes:
        print("No face detected")

    for faceBox in faceBoxes:
        face=frame[max(0,faceBox[1]-padding):
                   min(faceBox[3]+padding,frame.shape[0]-1),max(0,faceBox[0]-padding)
                   :min(faceBox[2]+padding, frame.shape[1]-1)]

        blob=cv2.dnn.blobFromImage(face, 1.0, (227,227), MODEL_MEAN_VALUES, swapRB=False)
        genderNet.setInput(blob)
        genderPreds=genderNet.forward()
        gender=genderList[genderPreds[0].argmax()]
        print(f'Gender: {gender}')

        ageNet.setInput(blob)
        agePreds=ageNet.forward()
        age=ageList[agePreds[0].argmax()]
        print(f'Age: {age[1:-1]} years')

        cv2.putText(resultImg, f'{gender}, {age}', (faceBox[0], faceBox[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,255), 2, cv2.LINE_AA)
        cv2.imshow("Detecting age and gender", resultImg)

性别和年龄检测的 Python 项目示例 

除了捕获摄像头画面进行检测外,脚本也支持在我们自己的一些图像上尝试这个性别和年龄分类器。

我们将进入命令提示符,使用图像选项运行脚本并指定要分类的图像:

输入:
pthon main.py --image girl2.jpg
输出:

 

资源:

在这个 python 项目中,我们实现了一个 CNN 来从单张脸部图片或视频流中检测性别和年龄。

项目代码压缩包和项目的数据集,请原站 ([www.aideeplearning.cn])

如果需要项目的原代码,请访问github:

GilLevi/AgeGenderDeepLearning on GitHub.

© 版权声明

文章版权归作者所有,未经允许,请勿转载,私自转载将严厉追究法律责任。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/425058.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ER-NeRF实时对话数字人模型训练与部署

ER-NeRF是基于NeRF用于生成数字人的方法&#xff0c;可以达到实时生成的效果。 下载源码 cd D:\Projects\ git clone https://github.com/Fictionarry/ER-NeRF cd D:\Projects\ER-NeRF 下载模型 准备面部解析模型 wget https://github.com/YudongGuo/AD-NeRF/blob/master/…

如何预估系统的瓶颈

如何预估系统的瓶颈 1 CPU1.1 CPU和同吞吐量 2 内存3 磁盘IO4 网络宽带5 数据库服务器6 APP服务端 CPU 使用率、内存占用、网络流量、磁盘 IO等指标&#xff0c;异常或者持续高位的情况下&#xff0c;都可能是系统瓶颈的表现。 1 CPU CPU使用率正常在70%左右&#xff0c;如果…

力扣hot100:42.接雨水

一、从单个水柱本身考虑 下标为i的水柱能接的雨水&#xff0c;取决于它左边最高的水柱 和 右边最高的水柱的最小值&#xff08;包括它本身&#xff09;。 为了理解这一性质&#xff0c;我们可以这样想象&#xff1a;取出左边最高和最边最高的水柱&#xff0c;将其比作一个碗的边…

绘制一下包络线

clear clc close all % 生成衰减信号 % 生成衰减曲线带有随机信号 fs 50; % 采样率 t 0:1/fs:100; % 时间向量&#xff0c;总时长为5秒 frequency0.5; signal exp(-0.05* t).*sin(2*pi*frequency*t); % 衰减曲线带有随机信号 % 计算包络线 [upper_envelope, lower_…

基于springboot+vue的教师工作量管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

ImageGlass:重塑你的图片查看体验,探索视觉艺术

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、什么是ImageGlass&#xff1f;①ImageGlass…

Python 编辑工具 Jupyter notebook

Jupyter notebook Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算&#xff1a;开发、文档编写、运行代码和展示结果。——Jupyter Notebook官方介绍 官网&#xff1a;Project Jupyter | Home Jupyter Notebook 是一个开源的交互式计算环境&#…

数据结构——lesson5栈和队列详解

hellohello~这里是土土数据结构学习笔记&#x1f973;&#x1f973; &#x1f4a5;个人主页&#xff1a;大耳朵土土垚的博客 &#x1f4a5; 所属专栏&#xff1a;数据结构学习笔记 &#x1f4a5;对于顺序表链表有疑问的都可以在上面数据结构的专栏进行学习哦~感谢大家的观看与…

Java电梯模拟

Java电梯模拟 文章目录 Java电梯模拟前言一、UML类图二、代码三、测试 前言 此程序为单线程简单模拟电梯(初版)&#xff0c;如果存在问题或者设计不合理的地方&#xff0c;请大家帮忙指出。 一、UML类图 二、代码 电梯调度器 package cn.xx.evevator;import java.util.*;pub…

【间说八股】面试官:我看你这里用到了模板模式?你能不能说一下什么是模板模式

模板模式 行为模式&#xff1a;这类模式负责对象间的高效沟通和职责委派。 模板方法模式是一种行为设计模式&#xff0c; 它在超类中定义了一个算法的框架&#xff0c; 允许子类在不修改结构的情况下重写算法的特定步骤。 模板方法模式是一种行为设计模式&#xff0c;其核心思想…

下载github项目到pycharm

一、下载git 1.下载git链接 https://git-scm.com/ 2.一路点击next&#xff0c;最后finish 二、使用git 1.安装成功后在开始菜单栏会找到如下内容&#xff0c;其中常用的是Git Bash 2.点击Git Bash 3.这里就可以克隆github上的代码了 点击复制&#xff0c;在命令行输入…

H264的打包,nal,es,pes,pts,dts,ps,ts

编码层次 视频编码层&#xff1a;预测、变换、量化、熵编码等操作slice层&#xff1a;将视频帧分割成若干个编码单元&#xff0c;包含一定数量的宏块&#xff0c;提高编解码的并行性和容错性。NAL层&#xff1a;提升对网络传输和数据存储的亲和性 视频编码层 基准-Baseline …

盘点实用又有意思的工具网站-搜嗖工具箱

生命倒计时 www.thismuchlonger.com 这是一个相哇塞的网站&#xff0c;可以让我们静下心来好好想想我们来这个世界究竟为了什么&#xff0c;因为当我们作为命运的主宰者。敲打键盘设定好自己一生长度的时候&#xff0c;我们的剩余寿命已经成绝对值&#xff0c;一旦生命变为了绝…

飞天使-学以致用-devops知识点4-SpringBoot项目CICD实现(实验失败,了解大概流程)

文章目录 代码准备创建jenkins 任务测试推送使用项目里面的jenkinsfile 进行升级操作 文字版本流程项目构建 代码准备 推送代码到gitlab 代码去叩叮狼教育找 k8s 创建jenkins 任务 创建一个k8s-cicd-demo 流水线任务 将jenkins 里面构建时候的地址还有token&#xff0c; 给到…

基于分位数回归的长短期记忆神经网络(QRLSTM)的MATLAB实现(源代码)

分位数回归的长短期神经记忆网络介绍&#xff1a; QRLSTM&#xff08;Quantile Regression Long Short-Term Memory&#xff09;分位数回归神经网络是一种结合了长短期记忆&#xff08;LSTM&#xff09;神经网络和分位数回归的模型。这种神经网络结构旨在对数据的不同分位数进行…

企业数字化的重要性与步骤:转型之道解析

什么是企业数字化&#xff1f;企业是否需要数字化转型&#xff1f;数字化转型对于企业究竟有什么好处&#xff1f;企业如何进行数字化转型&#xff1f;时代浪潮下&#xff0c;这是近两年大部分企业最关心的问题。今天一文解决您的有关“数字化”的疑问。 一、什么是数字化 什么…

简单的input框输入竟然异常卡顿,一个日常性能问题的排查思路

我们公司产品主要提供企业项目管理服务&#xff0c;那么自然有配套的desk工单管理系统&#xff0c;用于搜集客户bug以及相关问题反馈。有一天我在测试功能时碰巧发现了一个bug&#xff0c;所以就想着提一个工单记录下方便日后修复。但就在创建工单填写标题时我发现标题输入卡爆…

C++调用lua函数

C 调用Lua全局变量(普通) lua_getglobal(lua, "width");int width lua_tointeger(lua,-1);lua_pop(lua,1);std::cout << width << std::endl;lua_close(lua); 这几行代码要放到lua_pcall(lua, 0,0,0);之后才可以. C给lua传递变量 lua_pushstring(lua, …

数独游戏(dfs)

代码注释如下 #include <iostream> using namespace std; const int N 10; bool col[N][N], rol[N][N], cell[3][3][N]; char g[N][N]; bool dfs(int x, int y) { //用bool这样在找到一个方案就可以迅速退出if(y 9) x, y 0; //若y超出边界&#xff0c;则第二…

LeetCode---【链表的操作】

目录 206反转链表【链表结构基础】21合并两个有序链表【递归】我的答案【错误】自己修改【超出时间限制】在官方那里学到的【然后自己复写,错误】对照官方【自己修改】 160相交链表【未理解题目目的】在b站up那里学到的【然后自己复写,错误】【超出时间限制】对照官方【自己修改…