ER-NeRF实时对话数字人模型训练与部署

ER-NeRF是基于NeRF用于生成数字人的方法,可以达到实时生成的效果。

下载源码

cd D:\Projects\
git clone https://github.com/Fictionarry/ER-NeRF
cd D:\Projects\ER-NeRF

下载模型

准备面部解析模型

wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_parsing/79999_iter.pth?raw=true -O data_utils/face_parsing/79999_iter.pth

准备basel面部模型

在data_utils/face_tracking文件夹中新建文件夹3DMM

下载01_MorphableModel.mat

https://faces.dmi.unibas.ch/bfm/main.php?nav=1-2&id=downloadsicon-default.png?t=N7T8https://faces.dmi.unibas.ch/bfm/main.php?nav=1-2&id=downloads

勾选选项并填写资料,提交之后一封会发一封邮件到邮箱,包含下载地址及账号密码,输入正确后即可下载到tar的压缩文件,解压后将01_MorphableModel.mat放入项目中的 data_utils/face_tracking/3DMM 文件夹中

其他文件

wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/exp_info.npy?raw=true -O data_utils/face_tracking/3DMM/exp_info.npy
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/keys_info.npy?raw=true -O data_utils/face_tracking/3DMM/keys_info.npy
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/sub_mesh.obj?raw=true -O data_utils/face_tracking/3DMM/sub_mesh.obj
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/topology_info.npy?raw=true -O data_utils/face_tracking/3DMM/topology_info.npy

部署项目

拉取cuda116镜像

docker pull nvcr.io/nvidia/cuda:11.6.1-cudnn8-devel-ubuntu20.04

创建容器

docker run -it --name ernerf -v D:\Projects\ER-NeRF:/ernerf nvcr.io/nvidia/cuda:11.6.1-cudnn8-devel-ubuntu20.04

安装依赖环境

apt-get update -yq --fix-missing \
 && DEBIAN_FRONTEND=noninteractive apt-get install -yq --no-install-recommends \
    pkg-config \
    wget \
    cmake \
    curl \
    git \
    vim

# 对于Ubuntu,pyaudio需要portaudio的支持才能正常工作。
apt install portaudio19-dev

安装Miniconda3

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh -b -u -p ~/miniconda3
~/miniconda3/bin/conda init
source ~/.bashrc

创建环境

conda create -n ernerf python=3.10
conda activate ernerf

安装依赖库

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
pip install -r requirements.txt

conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install pytorch3d==0.7.4 -c pytorch3d
conda install ffmpeg
pip install tensorflow-gpu==2.8.0
pip install numpy==1.22.4
pip install opencv-python-headless
pip install protobuf==3.20.0
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116

运行 convert_BFM.py

cd data_utils/face_tracking
python convert_BFM.py

预处理

视频预处理

将视频放在 data/<ID>/<ID>.mp4 路径下

视频必须为 25FPS,所有帧都包含说话的人。 分辨率应约为 512x512,持续时间约为 1-5 分钟。

运行脚本以处理视频

python data_utils/process.py data/<ID>/<ID>.mp4

音频预处理

在训练和测试时指定音频功能的类型。

--asr_model <deepspeech, esperanto, hubert>

DeepSpeech

python data_utils/deepspeech_features/extract_ds_features.py --input data/<name>.wav
# save to data/<name>.npy

Wav2Vec

python data_utils/wav2vec.py --wav data/<name>.wav --save_feats
# save to data/<name>_eo.npy

HuBERT

# Borrowed from GeneFace. English pre-trained.
python data_utils/hubert.py --wav data/<name>.wav
# save to data/<name>_hu.npy

训练

首次运行需要一些时间来编译 CUDA 扩展。

# train (head and lpips finetune, run in sequence)
python main.py data/obama/ --workspace trial_obama/ -O --iters 100000
python main.py data/obama/ --workspace trial_obama/ -O --iters 125000 --finetune_lips --patch_size 32

# train (torso)
# <head>.pth should be the latest checkpoint in trial_obama
python main.py data/obama/ --workspace trial_obama_torso/ -O --torso --head_ckpt <head>.pth --iters 200000

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/425057.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何预估系统的瓶颈

如何预估系统的瓶颈 1 CPU1.1 CPU和同吞吐量 2 内存3 磁盘IO4 网络宽带5 数据库服务器6 APP服务端 CPU 使用率、内存占用、网络流量、磁盘 IO等指标&#xff0c;异常或者持续高位的情况下&#xff0c;都可能是系统瓶颈的表现。 1 CPU CPU使用率正常在70%左右&#xff0c;如果…

力扣hot100:42.接雨水

一、从单个水柱本身考虑 下标为i的水柱能接的雨水&#xff0c;取决于它左边最高的水柱 和 右边最高的水柱的最小值&#xff08;包括它本身&#xff09;。 为了理解这一性质&#xff0c;我们可以这样想象&#xff1a;取出左边最高和最边最高的水柱&#xff0c;将其比作一个碗的边…

绘制一下包络线

clear clc close all % 生成衰减信号 % 生成衰减曲线带有随机信号 fs 50; % 采样率 t 0:1/fs:100; % 时间向量&#xff0c;总时长为5秒 frequency0.5; signal exp(-0.05* t).*sin(2*pi*frequency*t); % 衰减曲线带有随机信号 % 计算包络线 [upper_envelope, lower_…

基于springboot+vue的教师工作量管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

ImageGlass:重塑你的图片查看体验,探索视觉艺术

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、什么是ImageGlass&#xff1f;①ImageGlass…

Python 编辑工具 Jupyter notebook

Jupyter notebook Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算&#xff1a;开发、文档编写、运行代码和展示结果。——Jupyter Notebook官方介绍 官网&#xff1a;Project Jupyter | Home Jupyter Notebook 是一个开源的交互式计算环境&#…

数据结构——lesson5栈和队列详解

hellohello~这里是土土数据结构学习笔记&#x1f973;&#x1f973; &#x1f4a5;个人主页&#xff1a;大耳朵土土垚的博客 &#x1f4a5; 所属专栏&#xff1a;数据结构学习笔记 &#x1f4a5;对于顺序表链表有疑问的都可以在上面数据结构的专栏进行学习哦~感谢大家的观看与…

Java电梯模拟

Java电梯模拟 文章目录 Java电梯模拟前言一、UML类图二、代码三、测试 前言 此程序为单线程简单模拟电梯(初版)&#xff0c;如果存在问题或者设计不合理的地方&#xff0c;请大家帮忙指出。 一、UML类图 二、代码 电梯调度器 package cn.xx.evevator;import java.util.*;pub…

【间说八股】面试官:我看你这里用到了模板模式?你能不能说一下什么是模板模式

模板模式 行为模式&#xff1a;这类模式负责对象间的高效沟通和职责委派。 模板方法模式是一种行为设计模式&#xff0c; 它在超类中定义了一个算法的框架&#xff0c; 允许子类在不修改结构的情况下重写算法的特定步骤。 模板方法模式是一种行为设计模式&#xff0c;其核心思想…

下载github项目到pycharm

一、下载git 1.下载git链接 https://git-scm.com/ 2.一路点击next&#xff0c;最后finish 二、使用git 1.安装成功后在开始菜单栏会找到如下内容&#xff0c;其中常用的是Git Bash 2.点击Git Bash 3.这里就可以克隆github上的代码了 点击复制&#xff0c;在命令行输入…

H264的打包,nal,es,pes,pts,dts,ps,ts

编码层次 视频编码层&#xff1a;预测、变换、量化、熵编码等操作slice层&#xff1a;将视频帧分割成若干个编码单元&#xff0c;包含一定数量的宏块&#xff0c;提高编解码的并行性和容错性。NAL层&#xff1a;提升对网络传输和数据存储的亲和性 视频编码层 基准-Baseline …

盘点实用又有意思的工具网站-搜嗖工具箱

生命倒计时 www.thismuchlonger.com 这是一个相哇塞的网站&#xff0c;可以让我们静下心来好好想想我们来这个世界究竟为了什么&#xff0c;因为当我们作为命运的主宰者。敲打键盘设定好自己一生长度的时候&#xff0c;我们的剩余寿命已经成绝对值&#xff0c;一旦生命变为了绝…

飞天使-学以致用-devops知识点4-SpringBoot项目CICD实现(实验失败,了解大概流程)

文章目录 代码准备创建jenkins 任务测试推送使用项目里面的jenkinsfile 进行升级操作 文字版本流程项目构建 代码准备 推送代码到gitlab 代码去叩叮狼教育找 k8s 创建jenkins 任务 创建一个k8s-cicd-demo 流水线任务 将jenkins 里面构建时候的地址还有token&#xff0c; 给到…

基于分位数回归的长短期记忆神经网络(QRLSTM)的MATLAB实现(源代码)

分位数回归的长短期神经记忆网络介绍&#xff1a; QRLSTM&#xff08;Quantile Regression Long Short-Term Memory&#xff09;分位数回归神经网络是一种结合了长短期记忆&#xff08;LSTM&#xff09;神经网络和分位数回归的模型。这种神经网络结构旨在对数据的不同分位数进行…

企业数字化的重要性与步骤:转型之道解析

什么是企业数字化&#xff1f;企业是否需要数字化转型&#xff1f;数字化转型对于企业究竟有什么好处&#xff1f;企业如何进行数字化转型&#xff1f;时代浪潮下&#xff0c;这是近两年大部分企业最关心的问题。今天一文解决您的有关“数字化”的疑问。 一、什么是数字化 什么…

简单的input框输入竟然异常卡顿,一个日常性能问题的排查思路

我们公司产品主要提供企业项目管理服务&#xff0c;那么自然有配套的desk工单管理系统&#xff0c;用于搜集客户bug以及相关问题反馈。有一天我在测试功能时碰巧发现了一个bug&#xff0c;所以就想着提一个工单记录下方便日后修复。但就在创建工单填写标题时我发现标题输入卡爆…

C++调用lua函数

C 调用Lua全局变量(普通) lua_getglobal(lua, "width");int width lua_tointeger(lua,-1);lua_pop(lua,1);std::cout << width << std::endl;lua_close(lua); 这几行代码要放到lua_pcall(lua, 0,0,0);之后才可以. C给lua传递变量 lua_pushstring(lua, …

数独游戏(dfs)

代码注释如下 #include <iostream> using namespace std; const int N 10; bool col[N][N], rol[N][N], cell[3][3][N]; char g[N][N]; bool dfs(int x, int y) { //用bool这样在找到一个方案就可以迅速退出if(y 9) x, y 0; //若y超出边界&#xff0c;则第二…

LeetCode---【链表的操作】

目录 206反转链表【链表结构基础】21合并两个有序链表【递归】我的答案【错误】自己修改【超出时间限制】在官方那里学到的【然后自己复写,错误】对照官方【自己修改】 160相交链表【未理解题目目的】在b站up那里学到的【然后自己复写,错误】【超出时间限制】对照官方【自己修改…

【微服务生态】Nginx

文章目录 一、概述二、Nginx 的安装三、常用命令四、Nginx 配置4.1 反向代理配置&#xff08;1&#xff09;反向代理实例1&#xff08;2&#xff09;反向代理实例2 4.2 负载均衡配置4.3 动静分离4.4 集群配置 五、nginx 原理与优化参数配置 一、概述 本次为简易版&#xff0c;…