【Linux C | 网络编程】套接字选项、getsockopt、setsockopt详解及C语言例子

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀
🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C++、数据结构、音视频🍭
🤣本文内容🤣:🍭介绍 🍭
😎金句分享😎:🍭你不能选择最好的,但最好的会来选择你——泰戈尔🍭
⏰发布时间⏰:2024-02-27 09:02:30

本文未经允许,不得转发!!!

目录

  • 🎄一、概述
  • 🎄二、Linux系统下套接字选项
  • 🎄三、getsockopt、setsockopt 函数
    • ✨3.1 getsockopt、setsockopt 函数介绍
    • ✨3.2 getsockopt、setsockopt 函数举例
  • 🎄四、常见的通用套接字选项
  • 🎄五、总结


在这里插入图片描述

🎄一、概述

在网络编程中,套接字选项经常需要用到,例如设置套接字缓冲区大小、设置套接字非阻塞等。在Linux中,与套接字选项相关的几个系统调用函数有:getsockoptsetsockoptfcntlioctl。其中,getsockoptsetsockopt函数只能用于套接字选项,也是本文要求重点掌握的两个函数,而fcntl在网络编程中,最常见的就是将套接字设置成非阻塞。


在这里插入图片描述

🎄二、Linux系统下套接字选项

下面两个图片是Linux系统下套接字选项汇总,级别分别有:SOL_SOCKET、IPPROTO_IP、IPPROTO_ICMPV6、IPPROTO_IPV6、IPPROTO_TCP、IPPROTO_SCTP;数据类型中,用{}来表示结构体,如:linger{}表示struct lingertimeval{}表示struct timevaltimeval{}表示struct timeval

1、套接字层和IP层的套接字选项汇总(见下图)
在这里插入图片描述

2、传输层的套接字选项汇总(见下图)
在这里插入图片描述


在这里插入图片描述

🎄三、getsockopt、setsockopt 函数

✨3.1 getsockopt、setsockopt 函数介绍

函数原型:

#include <sys/socket.h>
int getsockopt(int sockfd, int level, int optname, void *optval, socklen_t *optlen);
int setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen);
  • 函数说明:getsockoptsetstockopt用于获取或设置文件描述符sockfd引用的套接字的选项。
  • 函数参数:
    • sockfd:要操作的文件描述符sockfd
    • level:级别,取值一般有:SOL_SOCKET、IPPROTO_IP、IPPROTO_ICMPV6、IPPROTO_IPV6、IPPROTO_TCP、IPPROTO_SCTP
    • optname:选项名;
    • optval:指向某个变量的指针,用来存放获取或设置的值;
    • optlen:指明 optval 参数指向的内存大小。
  • 返回值:成功返回 0 ,出错返回 -1。

✨3.2 getsockopt、setsockopt 函数举例

下面代码是《unix网络编程卷1》源码进行修改的,可以依次打印获取到的套接字选项默认值。

// sockopt.c 修改自 《unix网络编程卷1》源码
/* include checkopts1 */
/* *INDENT-OFF* */
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/tcp.h>		/* for TCP_xxx defines */

union val {
  int				i_val;
  long				l_val;
  struct linger		linger_val;
  struct timeval	timeval_val;
} val;

static char	*sock_str_flag(union val *, int);
static char	*sock_str_int(union val *, int);
static char	*sock_str_linger(union val *, int);
static char	*sock_str_timeval(union val *, int);

struct sock_opts {
  const char	   *opt_str;
  int		opt_level;
  int		opt_name;
  char   *(*opt_val_str)(union val *, int);
} sock_opts[] = {
	{ "SO_BROADCAST",		SOL_SOCKET,	SO_BROADCAST,	sock_str_flag },
	{ "SO_DEBUG",			SOL_SOCKET,	SO_DEBUG,		sock_str_flag },
	{ "SO_DONTROUTE",		SOL_SOCKET,	SO_DONTROUTE,	sock_str_flag },
	{ "SO_ERROR",			SOL_SOCKET,	SO_ERROR,		sock_str_int },
	{ "SO_KEEPALIVE",		SOL_SOCKET,	SO_KEEPALIVE,	sock_str_flag },
	{ "SO_LINGER",			SOL_SOCKET,	SO_LINGER,		sock_str_linger },
	{ "SO_OOBINLINE",		SOL_SOCKET,	SO_OOBINLINE,	sock_str_flag },
	{ "SO_RCVBUF",			SOL_SOCKET,	SO_RCVBUF,		sock_str_int },
	{ "SO_SNDBUF",			SOL_SOCKET,	SO_SNDBUF,		sock_str_int },
	{ "SO_RCVLOWAT",		SOL_SOCKET,	SO_RCVLOWAT,	sock_str_int },
	{ "SO_SNDLOWAT",		SOL_SOCKET,	SO_SNDLOWAT,	sock_str_int },
	{ "SO_RCVTIMEO",		SOL_SOCKET,	SO_RCVTIMEO,	sock_str_timeval },
	{ "SO_SNDTIMEO",		SOL_SOCKET,	SO_SNDTIMEO,	sock_str_timeval },
	{ "SO_REUSEADDR",		SOL_SOCKET,	SO_REUSEADDR,	sock_str_flag },
#ifdef	SO_REUSEPORT
	{ "SO_REUSEPORT",		SOL_SOCKET,	SO_REUSEPORT,	sock_str_flag },
#else
	{ "SO_REUSEPORT",		0,			0,				NULL },
#endif
	{ "SO_TYPE",			SOL_SOCKET,	SO_TYPE,		sock_str_int },
//	{ "SO_USELOOPBACK",		SOL_SOCKET,	SO_USELOOPBACK,	sock_str_flag },
//	{ "IP_TOS",				IPPROTO_IP,	IP_TOS,			sock_str_int },
//	{ "IP_TTL",				IPPROTO_IP,	IP_TTL,			sock_str_int },
#ifdef	IPV6_DONTFRAG
	{ "IPV6_DONTFRAG",		IPPROTO_IPV6,IPV6_DONTFRAG,	sock_str_flag },
#else
	{ "IPV6_DONTFRAG",		0,			0,				NULL },
#endif
#ifdef	IPV6_UNICAST_HOPS
	{ "IPV6_UNICAST_HOPS",	IPPROTO_IPV6,IPV6_UNICAST_HOPS,sock_str_int },
#else
	{ "IPV6_UNICAST_HOPS",	0,			0,				NULL },
#endif
#ifdef	IPV6_V6ONLY
	{ "IPV6_V6ONLY",		IPPROTO_IPV6,IPV6_V6ONLY,	sock_str_flag },
#else
	{ "IPV6_V6ONLY",		0,			0,				NULL },
#endif
//	{ "TCP_MAXSEG",			IPPROTO_TCP,TCP_MAXSEG,		sock_str_int },
//	{ "TCP_NODELAY",		IPPROTO_TCP,TCP_NODELAY,	sock_str_flag },
#ifdef	SCTP_AUTOCLOSE
	{ "SCTP_AUTOCLOSE",		IPPROTO_SCTP,SCTP_AUTOCLOSE,sock_str_int },
#else
	{ "SCTP_AUTOCLOSE",		0,			0,				NULL },
#endif
#ifdef	SCTP_MAXBURST
	{ "SCTP_MAXBURST",		IPPROTO_SCTP,SCTP_MAXBURST,	sock_str_int },
#else
	{ "SCTP_MAXBURST",		0,			0,				NULL },
#endif
#ifdef	SCTP_MAXSEG
	{ "SCTP_MAXSEG",		IPPROTO_SCTP,SCTP_MAXSEG,	sock_str_int },
#else
	{ "SCTP_MAXSEG",		0,			0,				NULL },
#endif
#ifdef	SCTP_NODELAY
	{ "SCTP_NODELAY",		IPPROTO_SCTP,SCTP_NODELAY,	sock_str_flag },
#else
	{ "SCTP_NODELAY",		0,			0,				NULL },
#endif
	{ NULL,					0,			0,				NULL }
};
/* *INDENT-ON* */
/* end checkopts1 */

/* include checkopts2 */
int main(int argc, char **argv)
{
	int					fd;
	socklen_t			len;
	struct sock_opts	*ptr;

	for (ptr = sock_opts; ptr->opt_str != NULL; ptr++) {
		printf("%s: ", ptr->opt_str);
		if (ptr->opt_val_str == NULL)
			printf("(undefined)\n");
		else {
			switch(ptr->opt_level) {
			case SOL_SOCKET:
//			case IPPROTO_IP:
//			case IPPROTO_TCP:
				fd = socket(AF_INET, SOCK_STREAM, 0);
				break;
#ifdef	IPV6
			case IPPROTO_IPV6:
				fd = socket(AF_INET6, SOCK_STREAM, 0);
				break;
#endif
#ifdef	IPPROTO_SCTP
			case IPPROTO_SCTP:
				fd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);
				break;
#endif
			default:
				printf("Can't create fd for level %d\n", ptr->opt_level);
			}

			len = sizeof(val);
			if (getsockopt(fd, ptr->opt_level, ptr->opt_name,
						   &val, &len) == -1) {
				printf("getsockopt error");
			} else {
				printf("default = %s\n", (*ptr->opt_val_str)(&val, len));
			}
			close(fd);
		}
	}
	return 0;
}
/* end checkopts2 */

/* include checkopts3 */
static char	strres[128];

static char	*
sock_str_flag(union val *ptr, int len)
{
/* *INDENT-OFF* */
	if (len != sizeof(int))
		snprintf(strres, sizeof(strres), "size (%d) not sizeof(int)", len);
	else
		snprintf(strres, sizeof(strres),
				 "%s", (ptr->i_val == 0) ? "off" : "on");
	return(strres);
/* *INDENT-ON* */
}
/* end checkopts3 */

static char	*
sock_str_int(union val *ptr, int len)
{
	if (len != sizeof(int))
		snprintf(strres, sizeof(strres), "size (%d) not sizeof(int)", len);
	else
		snprintf(strres, sizeof(strres), "%d", ptr->i_val);
	return(strres);
}

static char	*
sock_str_linger(union val *ptr, int len)
{
	struct linger	*lptr = &ptr->linger_val;

	if (len != sizeof(struct linger))
		snprintf(strres, sizeof(strres),
				 "size (%d) not sizeof(struct linger)", len);
	else
		snprintf(strres, sizeof(strres), "l_onoff = %d, l_linger = %d",
				 lptr->l_onoff, lptr->l_linger);
	return(strres);
}

static char	*
sock_str_timeval(union val *ptr, int len)
{
	struct timeval	*tvptr = &ptr->timeval_val;

	if (len != sizeof(struct timeval))
		snprintf(strres, sizeof(strres),
				 "size (%d) not sizeof(struct timeval)", len);
	else
		snprintf(strres, sizeof(strres), "%ld sec, %ld usec",
				 tvptr->tv_sec, tvptr->tv_usec);
	return(strres);
}

运行结果:
在这里插入图片描述

在这里插入图片描述

🎄四、常见的通用套接字选项

  • SO_BROADCAST:开启或禁止进程发送广播消息的能力。只有数据报套接字支持广播;
  • SO_KEEPALIVE:给一个TCP套接字设置保持存活(keep-alive)选项后,如果2小时内在该套接字的任一方向上都没有数据交换,TCP就自动给对端发送一个保持存活探测分节(keep-alive probe)。
  • SO_LINGER:本选项指定close函数对面向连接的协议(例如TCP和SCTP,但不是UDP)如何操作。默认操作是close立即返回,但是如果有数据残留在套接字发送缓冲区中,系统将试着把这些数据发送给对端。
  • SO_RCVBUF:获取或设置接收缓冲区大小。接收缓冲区被TCP、UDP和SCTP用来保存接收到的数据,直到由应用进程来读取;
  • SO_SNDBUF:获取或设置发送缓冲区大小。
  • SO_RCVLOWAT:接收低水位标记。让select函数返回“可读”时套接字接收缓冲区中所需的数据量。
  • SO_SNDLOWAT:发送低水位标记。让select函数返回“可写”时套接字发送缓冲区中所需的可用空间。
  • SO_REUSEADDR
    (1) SO_REUSEADDR允许启动一个监听服务器并捆绑其众所周知端口,即使以前建立的将该端口用作它们的本地端口的连接仍存在。
    (2) SO_REUSEADDR允许在同一端口上启动同一服务器的多个实例,只要每个实例捆绑一个不同的本地IP地址即可。
    (3) SO_REUSEADDR允许单个进程捆绑同一端口到多个套接字上,只要每次捆绑指定不同的本地P地址即可。
    (4) SO_REUSEADDR允许完全重复的捆绑:当一个IP地址和端口已绑定到某个套接字上时,如果传输协议支持,同样的IP地址和端口还可以捆绑到另一个套接字上。一般来说本特性仅支持UDP套接字。

在这里插入图片描述

🎄五、总结

👉本文介绍网络编程中的套接字选项,先是汇总了常见的套接字选项,然后介绍获取和设置套接字选项的函数getsockopt、setsockopt,并给出对应的C语言例子,最后列出几个常见的通用套接字选项。

在这里插入图片描述
如果文章有帮助的话,点赞👍、收藏⭐,支持一波,谢谢 😁😁😁

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/421067.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

StarRocks实战——表设计规范与监控体系

目录 前言 一、StarRocks表设计 1.1 字段类型 1.2 分区分桶 1.2.1 分区规范 1.2.2 分桶规范 1.3 主键表 1.3.1 数据有冷热特征 1.3.2 大宽表 1.4 实际案例 1.4.1 案例一&#xff1a;主键表内存优化 1.4.2 案例一&#xff1a;Update内存超了&#xff0c;导致主键表导…

华为HCIP Datacom H12-821 卷3

1.单选题 四台路由器运行 IS-IS 且已经建立邻接关系&#xff0c;区域号和路由器的等级如图中标记&#xff0c;则 R4到达 10.0.2.2/32 的的 Cost 值为多少? A、40 B、10 C、20 D、30 正确答案&#xff1a; D 解析&#xff1a; 由于没有配置路由渗透&#xff0c;所以R4会选择…

02-prometheus监控-服务器节点监控node-exporter

一、概述 prometheus&#xff0c;本身是一个【数据收集】和【数据处理】的工具&#xff0c;如果效果要监控一台服务器物理机&#xff0c;有两种方式&#xff0c;一种是在物理机上部署“node-export”来收集数据上报给prometheus&#xff0c;另一种是“自定义监控”&#xff1b;…

【数据结构】顺序表和链表的对比,在各种情况下如何选择

顺序表详细内容&#xff1a; 【数据结构】线性表 顺序表&#xff08;动态、静态分配&#xff0c;插入删除查找基本操作&#xff09;解析完整代码 单链表详细内容&#xff1a; 【数据结构】单链表解析完整代码&#xff08;插入、删除、尾插法、头插法、按值和按位查找、前插和后…

SpringMVC自定义视图解析器

/** * 使用View接口完成请求转发|重定向 * 解释: * SpringMVC的官方&#xff0c;提供了一个叫做View的接口&#xff0c;告诉开发人员 * DispatcherServlet底层会调用View接口的实例化对象中的逻辑方法 * 来完成对应的请求转发和重定向。 * 使用: * 1. 单元方法的返回值为View接…

git根据文件改动将文件自动添加到缓冲区

你需要修改以下脚本中的 use_cca: false 部分 #!/bin/bash# 获取所有已修改但未暂存的文件 files$(git diff --name-only)for file in $files; do# 检查文件中是否存在"use_cca: false"if grep -q "use_cca: false" "$file"; thenecho "Ad…

Android 跨进程通信aidl及binder机制详解(一)

前言 上文中描述了&#xff0c;什么是绑定服务、以及创建一个绑定服务都可以通过哪些方式&#xff0c;同时说了通过扩展Binder类来创建一个绑定服务&#xff0c;并使用一个例子来说明了客户端与服务端的绑定过程&#xff0c;最后又总结了绑定服务的生命周期与调用过程。由于上…

【Vue3】自定义 Vue3 插件(全局实现页面加载动画)

// main.ts import { createApp } from vue import App from ./App.vue import Loading from "./components/Loading/index.ts";const app createApp(App) type Lod {show: () > void,hide: () > void } //编写ts loading 声明文件放置报错 和 智能提示 decl…

虚拟机部署Sentry步骤,国内地址

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分…

Cesium插件系列——3dtiles压平

本系列为自己基于cesium写的一套插件具体实现。 这里是根据Cesium提供的CustomShader来实现的。 在CustomShader的vertexShaderText里&#xff0c;需要定义vertexMain函数&#xff0c;例如下&#xff1a; struct VertexInput {Attributes attributes;FeatureIds featureIds;…

AcWing 787. 归并排序 解题思路及代码

先贴个题目&#xff1a; 以及原题链接&#xff1a;787. 归并排序 - AcWing题库https://www.acwing.com/problem/content/789/纯板子题&#xff0c;先贴代码吧&#xff0c;根据代码讲思路&#xff1a; #include <iostream> using namespace std;const int N 1e5 10; in…

低密度奇偶校验码LDPC(七)——SPA和积译码算法的简化

一、SPA译码算法的实际应用 查找表与拟合 盒加SPA译码器 二、SPA译码算法的简化算法 最小和算法(MSA) 归一化最小和算法(Normalized MSA, NMSA) 偏移最小和算法(Offset MSA, OMSA) 三、NMSA算法的Matlab实现 function [x_hat, iter_this_time] Layered_NMSA_BP_decoder(ll…

【设计模式】(一)设计模式概述

一、设计模式概述 设计模式&#xff08;Design pattern&#xff09;**是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结 在GOF编写的设计模式(可复用面向对象软件的基础)一书中说道: 本书涉及的设计模式并不描述新的或未经证实的设计&#xff0c;我们只收…

智能汽车加速车规级存储应用DS2431P+TR 汽车级EEPROM 存储器IC

DS2431PT&R是一款1024位1-Wire EEPROM芯片&#xff0c;由四页存储区组成&#xff0c;每页256位。数据先被写入一个8字节暂存器中&#xff0c;经校验后复制到EEPROM存储器。该器件的特点是&#xff0c;四页存储区相互独立&#xff0c;可以单独进行写保护或进入EPROM仿真模式…

第十五天-爬虫项目实战

目录 1.介绍 2.代码 1.main.py 2.PageSider.py 3.DetailSpider.py 4.DataParse.py 5.Constant.py 6.HanderRequest.py 1.介绍 1. 使用多线程爬取网站 2.爬取数据后保存至excel 3.爬取网站(仅做测试)网创类项目爬取&#xff1a;https://www.maomp.com/ 4..实现效果 …

【力扣白嫖日记】585.2016年的投资

前言 练习sql语句&#xff0c;所有题目来自于力扣&#xff08;https://leetcode.cn/problemset/database/&#xff09;的免费数据库练习题。 今日题目&#xff1a; 585.2016年的投资 表&#xff1a;Person 列名类型pidinttiv_2015floattiv_2016floatlatfloatlonfloat pid …

队列实现栈与栈实现队列

文章目录 前言一、使用队列实现栈二、使用栈实现队列 前言 1、用于巩固栈和队列。 2、本章是使用纯C语言实现的栈和队列&#xff0c;不懂的可以先看看这个喔&#xff1a;c语言实现栈和队列&#xff0c;当然这里直接用C的栈和队列会更方便哦。 3、利于复习C语言的知识点。 一、使…

吸猫毛空气净化器哪个好?推荐除猫毛效果好宠物空气净化器品牌

当下有越来越多的家庭选择养宠物&#xff01;尽管家里变得更加温馨&#xff0c;但养宠可能会带来异味和空气中的毛发增多可能会带来健康问题&#xff0c;这是一个大问题&#xff01; 不想家里弥漫着异味&#xff0c;特别是来自宠物便便的味道&#xff0c;所以需要一款能够处理…

跨境知识分享:什么是动态IP?和静态IP有什么区别?

对于我们跨境人来说&#xff0c;清楚地了解IP地址、代理IP等这些基础知识&#xff0c;并学会正确地使用IP地址对于保障店铺的安全性和稳定性至关重要&#xff0c;尤其是理解动态IP和静态IP之间的区别&#xff0c;以及如何利用这些知识来防止账号关联&#xff0c;对于每个电商卖…

什么是MAC地址? win10电脑查看MAC地址的多种方法

您是否知道连接到家庭网络的每件硬件都有自己的身份&#xff1f;正如每个设备都分配有自己的 IP 地址一样&#xff0c;每个硬件都有一个唯一的网络标识符。 该标识符称为MAC 地址。MAC 代表媒体访问控制。您可能需要 MAC 地址来解决网络问题或配置新设备。在 Windows 中查找您…