02-prometheus监控-服务器节点监控node-exporter

一、概述

        prometheus,本身是一个【数据收集】和【数据处理】的工具,如果效果要监控一台服务器物理机,有两种方式,一种是在物理机上部署“node-export”来收集数据上报给prometheus,另一种是“自定义监控”;

        node-exporter,就是将服务器物理机的数据,收集好,不需要运维人员自己配置了,是一个比较简单的监控物理机的组件;

        本节,我们就来讲述node-exporter的使用方式,及prometheus如何来查询数据;

二、被监控节点安装node-exporter

1,准备一台被监控机器

10.0.0.41     prometheus-node41    1c1g20GB

2,上传安装包

给大家准备了安装包在百度云盘

链接:https://pan.baidu.com/s/1es-MFSjp4HNzercDiY-1Cg?pwd=ctk8 
提取码:ctk8

· 创建工作目录

[root@prometheus-node41 ~]# mkdir -pv /node-export/{soft,data,logs}

· 上传解压安装包

[root@prometheus-node41 soft]# rz -E
[root@prometheus-node41 soft]# tar xf node_exporter-1.6.1.linux-amd64.tar.gz 
[root@prometheus-node41 soft]# ll
total 10128
drwxr-xr-x 2 1001 1002       56 Jul 17  2023 node_exporter-1.6.1.linux-amd64
-rw-r--r-- 1 root root 10368103 Nov  8 01:42 node_exporter-1.6.1.linux-amd64.tar.gz

· 创建软连接

[root@prometheus-node41 soft]# ln -sv /node-export/soft/node_exporter-1.6.1.linux-amd64 /node-export/soft/node-exporter

3,配置systemctl启动node-exporter

· 编辑启动文件

[root@prometheus-node41 soft]# cat  /etc/systemd/system/node-exporter.service
[Unit]
Description=xinjizhiwa node-exporter
Documentation=https://prometheus.io/docs/introduction/overview/
After=network.target

[Service]
Restart=on-failure
ExecStart=/node-export/soft/node-exporter/node_exporter
ExecReload=/bin/kill -HUP \$MAINPID
LimitNOFILE=65535

[Install]
WantedBy=multi-user.target

· 重新加载systemd启动node-exporter

[root@prometheus-node41 soft]# systemctl daemon-reload 
[root@prometheus-node41 soft]# systemctl enable --now node-exporter.service 

· 检测是否启动成功

[root@prometheus-node41 soft]# netstat -tnulp

· 浏览器访问

10.0.0.41:9100

此时,被监控节点的node-exporter部署完毕

三、配置prometheus收集node-exporter采集的数据

1,编辑prometheus配置文件

[root@prometheus-server31 prometheus]# vim /prometheus/soft/prometheus/prometheus.yml 

  #抓取监控的间隔时间,多长时间获取一次数据(生产环境,建议15-30s);
  scrape_interval: 3s
  #多久读一次规则
  evaluation_interval: 15s

#先不解释,之后会讲
alerting:
  alertmanagers:
    - static_configs:
        - targets:
          # - alertmanager:9093

#先不讲,之后会讲
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"

#被监控的配置
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]
  #另起一个job名称,被监控的主体自定义名称
  - job_name: "node-exporter"
    static_configs:
      #被监控的数据抓取地址;
      - targets: ["10.0.0.41:9100"]

·【job】的配置释义

·【监控地址/目标】的配置释义

2,重新加载prometheus服务

curl -X POST http://10.0.0.31:9090/-/reload

3,刷新prometheus页面

此时,就会看到,新配置的被监控项主体的指标列表;

至此,prometheus收集node-exporter的数据就配置成功;

四、PromeQL语句

        我们现在已经将被监控的服务器的数据采集到了“prometheus”,那么如何操作这些数据呐?

        就涉及到了,prometheus操作数据的语句:【PromeQL

1,了解数据的结构

        想要操作数据,我们需要先知道,数据长什么样子?

· 查看数据

浏览器防备node-exporter,点击【Metrics】

· 数据的结构介绍

点击Metrics之后,就可以看到,node-exporter采集的数据;

数据包含结构:

1,数据类型【TYPE】

2,数据的key { 数据的value }

也就是说,数据是以key{value}的形式,展示的;

至于数据类型,以后再说,现在不着急;

2,PromeQL语句的简单实用

· 查看节点存活监控【up】

up #代表查看所有被监控节点是否存活

1表示存活;

0表示存活;

· 查看监控指标【key{value}】

本次学习,我们查cpu作为案例;

只需要写入“关键词”就会弹出与之相关的所有字段key

筛选我们想要的cpu相关数据;

key { value,value,value }

筛选10s内我们想要的cpu相关数据;

key { value,value,value }[10s]

3,PromeQL的相关函数

· sum求和

将查询出来的数据,求和计算;

sum(key{value})

· increase时间段总增长量

查看1分钟内,空闲率增长量

取时间段内的起始第一个值,和最后一个值的差值,就是increase的计算方式。

increase(node_cpu_seconds_total{instance="10.0.0.41:9100",mode="idle"}[1m])

· by函数分组统计

by函数,跟mysql里面的by分组时一个意思,使用起来也几乎一样。

案例:查询所有节点的cpu空闲率,安装监控节点分组;

sum(node_cpu_seconds_total{cpu="0",mode="idle"})by(instance)

· rate平均增量

案例:查询1分钟之内cpu的空闲值,增长量,按照每秒增长多少,求出这个值。

increase就是时间段内:【最后一个值】 - 【第一个值】

rate就是时间段内:(【最后一个值】 - 【第一个值】)/时间段

rate(node_cpu_seconds_total{cpu="0",mode="idle"}[1m])

· topk函数

就是把求出来的值的列表,取前几位的意思

由于本次学习,没有安装其他的监控机器,所以演示不完善,大家能明白这个意思就行了;

topk(2,rate(node_cpu_seconds_total{mode="idle"}[3m]))

· count函数-统计计数

案例:查询目前有多少个cpu监控模式(mode)

count(node_cpu_seconds_total{cpu="0"})

至此,基本函数,大家就有了初步的了解;

4,PromeQL案例

求cpu的空闲率

sum(【cpu总空闲时间】)/sum(【cpu所有使用时间】)

sum(node_cpu_seconds_total{mode="idle"})/sum(node_cpu_seconds_total)*100

至此,PromeQL的简单了解,就到这了,比较墨迹了,接下来我们先进入下一步学习,在从头回顾一下我们这个PromeQL的不懂的技术点。

五、grafana出图展示数据

1,机器准备

10.0.0.71-grafana   1c1g 20GB

2,安装grafana

本次学习,给大家准备了安装包在百度云盘

链接:https://pan.baidu.com/s/1sMJrz1afPqmaW_dypUXQmA?pwd=sotw 
提取码:sotw

· 上传软件包

[root@grafana71 soft]# rz -E
rz waiting to receive.
[root@grafana71 soft]# ll
total 85616
-rw-r--r-- 1 root root 87670697 Nov  8 01:42 grafana-enterprise-10.0.3-1.x86_64.rpm

· 安装grafana

[root@grafana71 soft]# yum -y localinstall grafana-enterprise-10.0.3-1.x86_64.rpm

· 启动grafana

[root@grafana71 soft]# systemctl enable --now grafana-server.service

· 检查3000端口是否监听

[root@grafana71 soft]# netstat -tnulp

3,浏览器访问grfana

10.0.0.71:3000

登录:

账号:admin

密码:admin

· 配置数据源

就是获取prometheus的数据

【home】-【adminstration】-【data sources】-【add  data-sources】-【prometheus】

NAME字段,自定义一个数据源名称

server URL ,就是我们prometheus的地址+端口

点击save&test

至此,数据源配置完毕;

· 新建仪表盘

【home】-【dashboards】-【new】-【new  folder】

创建一个新的folder

进入目录后,创建仪表盘

【create  dashboard】

选择数据源

【Add visualization】

选择刚刚添加的数据源

此时进入到,仪表盘的编辑页面;

· 创建一个数据展示图

1,测试代码

第一步,测试代码,就是计算一个cpu使用率的PromeQL代码;

测试没问题,就复制;

2,写入grafana图形

(1-sum(node_cpu_seconds_total{mode="idle"})/sum(node_cpu_seconds_total))*100

4,下载开源的仪表盘

#grafana官网查询dashboard模板id
https://grafana.com/grafana/dashboards

· 搜索找到想要的仪表盘

· 下载仪表盘

· 上传仪表盘json文件到grafana

【home】-【dashboard】-【new】-【import】

上传json文件

保存

· 回到自己的dashboard列表点进去查看

至此,我们的服务器节点监控,学习完毕。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/421062.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】顺序表和链表的对比,在各种情况下如何选择

顺序表详细内容: 【数据结构】线性表 顺序表(动态、静态分配,插入删除查找基本操作)解析完整代码 单链表详细内容: 【数据结构】单链表解析完整代码(插入、删除、尾插法、头插法、按值和按位查找、前插和后…

SpringMVC自定义视图解析器

/** * 使用View接口完成请求转发|重定向 * 解释: * SpringMVC的官方,提供了一个叫做View的接口,告诉开发人员 * DispatcherServlet底层会调用View接口的实例化对象中的逻辑方法 * 来完成对应的请求转发和重定向。 * 使用: * 1. 单元方法的返回值为View接…

git根据文件改动将文件自动添加到缓冲区

你需要修改以下脚本中的 use_cca: false 部分 #!/bin/bash# 获取所有已修改但未暂存的文件 files$(git diff --name-only)for file in $files; do# 检查文件中是否存在"use_cca: false"if grep -q "use_cca: false" "$file"; thenecho "Ad…

Android 跨进程通信aidl及binder机制详解(一)

前言 上文中描述了,什么是绑定服务、以及创建一个绑定服务都可以通过哪些方式,同时说了通过扩展Binder类来创建一个绑定服务,并使用一个例子来说明了客户端与服务端的绑定过程,最后又总结了绑定服务的生命周期与调用过程。由于上…

【Vue3】自定义 Vue3 插件(全局实现页面加载动画)

// main.ts import { createApp } from vue import App from ./App.vue import Loading from "./components/Loading/index.ts";const app createApp(App) type Lod {show: () > void,hide: () > void } //编写ts loading 声明文件放置报错 和 智能提示 decl…

虚拟机部署Sentry步骤,国内地址

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分…

Cesium插件系列——3dtiles压平

本系列为自己基于cesium写的一套插件具体实现。 这里是根据Cesium提供的CustomShader来实现的。 在CustomShader的vertexShaderText里,需要定义vertexMain函数,例如下: struct VertexInput {Attributes attributes;FeatureIds featureIds;…

AcWing 787. 归并排序 解题思路及代码

先贴个题目&#xff1a; 以及原题链接&#xff1a;787. 归并排序 - AcWing题库https://www.acwing.com/problem/content/789/纯板子题&#xff0c;先贴代码吧&#xff0c;根据代码讲思路&#xff1a; #include <iostream> using namespace std;const int N 1e5 10; in…

低密度奇偶校验码LDPC(七)——SPA和积译码算法的简化

一、SPA译码算法的实际应用 查找表与拟合 盒加SPA译码器 二、SPA译码算法的简化算法 最小和算法(MSA) 归一化最小和算法(Normalized MSA, NMSA) 偏移最小和算法(Offset MSA, OMSA) 三、NMSA算法的Matlab实现 function [x_hat, iter_this_time] Layered_NMSA_BP_decoder(ll…

【设计模式】(一)设计模式概述

一、设计模式概述 设计模式&#xff08;Design pattern&#xff09;**是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结 在GOF编写的设计模式(可复用面向对象软件的基础)一书中说道: 本书涉及的设计模式并不描述新的或未经证实的设计&#xff0c;我们只收…

智能汽车加速车规级存储应用DS2431P+TR 汽车级EEPROM 存储器IC

DS2431PT&R是一款1024位1-Wire EEPROM芯片&#xff0c;由四页存储区组成&#xff0c;每页256位。数据先被写入一个8字节暂存器中&#xff0c;经校验后复制到EEPROM存储器。该器件的特点是&#xff0c;四页存储区相互独立&#xff0c;可以单独进行写保护或进入EPROM仿真模式…

第十五天-爬虫项目实战

目录 1.介绍 2.代码 1.main.py 2.PageSider.py 3.DetailSpider.py 4.DataParse.py 5.Constant.py 6.HanderRequest.py 1.介绍 1. 使用多线程爬取网站 2.爬取数据后保存至excel 3.爬取网站(仅做测试)网创类项目爬取&#xff1a;https://www.maomp.com/ 4..实现效果 …

【力扣白嫖日记】585.2016年的投资

前言 练习sql语句&#xff0c;所有题目来自于力扣&#xff08;https://leetcode.cn/problemset/database/&#xff09;的免费数据库练习题。 今日题目&#xff1a; 585.2016年的投资 表&#xff1a;Person 列名类型pidinttiv_2015floattiv_2016floatlatfloatlonfloat pid …

队列实现栈与栈实现队列

文章目录 前言一、使用队列实现栈二、使用栈实现队列 前言 1、用于巩固栈和队列。 2、本章是使用纯C语言实现的栈和队列&#xff0c;不懂的可以先看看这个喔&#xff1a;c语言实现栈和队列&#xff0c;当然这里直接用C的栈和队列会更方便哦。 3、利于复习C语言的知识点。 一、使…

吸猫毛空气净化器哪个好?推荐除猫毛效果好宠物空气净化器品牌

当下有越来越多的家庭选择养宠物&#xff01;尽管家里变得更加温馨&#xff0c;但养宠可能会带来异味和空气中的毛发增多可能会带来健康问题&#xff0c;这是一个大问题&#xff01; 不想家里弥漫着异味&#xff0c;特别是来自宠物便便的味道&#xff0c;所以需要一款能够处理…

跨境知识分享:什么是动态IP?和静态IP有什么区别?

对于我们跨境人来说&#xff0c;清楚地了解IP地址、代理IP等这些基础知识&#xff0c;并学会正确地使用IP地址对于保障店铺的安全性和稳定性至关重要&#xff0c;尤其是理解动态IP和静态IP之间的区别&#xff0c;以及如何利用这些知识来防止账号关联&#xff0c;对于每个电商卖…

什么是MAC地址? win10电脑查看MAC地址的多种方法

您是否知道连接到家庭网络的每件硬件都有自己的身份&#xff1f;正如每个设备都分配有自己的 IP 地址一样&#xff0c;每个硬件都有一个唯一的网络标识符。 该标识符称为MAC 地址。MAC 代表媒体访问控制。您可能需要 MAC 地址来解决网络问题或配置新设备。在 Windows 中查找您…

地图可视化绘制 | R-cartography 艺术地图绘制

本期推文我们介绍一个可以绘制颇具“艺术”风格地图的可视化包-cartography&#xff0c;主要涉及的内容如下&#xff1a; R-cartography 简介 R-cartography 实例应用 所有完整代码都已整理之我们的线上课程&#xff0c;有需要的同学v yidianshuyulove 咨询 R-cartography …

阿里云全面降价,释放了什么信号?

元宵节刚过&#xff0c;阿里云就放了一个大招—— 今天&#xff08;2月29日&#xff09;上午&#xff0c;阿里云发布通告&#xff0c;宣布全线下调云产品官网售价。这次降价涉及计算、存储、数据库等在内的100多款产品&#xff0c;平均降价幅度超过20%&#xff0c;最高降幅达55…

day07_分类管理EasyExcel品牌管理

文章目录 1 分类管理1.1 菜单添加1.2 表结构介绍1.3 页面制作1.4 列表查询1.4.1 需求分析1.4.2 后端接口CategoryCategoryControllerCategoryServiceCategoryMapperCategoryMapper.xml 1.4.3 前端对接category.jscategory.vue 2 EasyExcel2.1 数据导入导出意义2.2 EasyExcel简介…